40 research outputs found
Polycystic ovary syndrome
The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.Robert J Norman, Ruijin Wu and Marcin T Stankiewic
The Acute Effects of Non-concussive Head Impacts on Brain Microstructure, Chemistry and Function in Male Soccer Players: A Pilot Randomised Controlled Trial
Background: Head impacts, particularly, non-concussive impacts, are common in sport. Yet, their effects on the brain remain poorly understood. Here, we investigated the acute effects of non-concussive impacts on brain microstructure, chemistry, and function using magnetic resonance imaging (MRI) and other techniques. Results: Fifteen healthy male soccer players participated in a randomised, controlled, crossover pilot trial. The intervention was a non-concussive soccer heading task (‘Heading’) and the control was an equivalent ‘Kicking’ task. Participants underwent MRI scans ~ 45 min post-task which took ~60 min to complete. Blood was also sampled, and cognitive function assessed, pre-, post-, 2.5 h post-, and 24 h post-task. Brain chemistry: Heading increased total N-acetylaspartate (p = 0.012; g = 0.66) and total creatine (p = 0.010; g = 0.77) levels in the primary motor cortex (but not the dorsolateral prefrontal cortex) as assessed via proton magnetic resonance spectroscopy. Glutamate-glutamine, myoinositol, and total choline levels were not significantly altered in either region. Brain structure: Heading had no significant effects on diffusion weighted imaging metrics. However, two blood biomarkers expressed in brain microstructures, glial fibrillary acidic protein and neurofilament light, were elevated 24 h (p = 0.014; g = 0.64) and ~ 7-days (p = 0.046; g = 1.19) post-Heading (vs. Kicking), respectively. Brain Function: Heading decreased tissue conductivity in 11 clusters located in the white matter of the frontal, occipital, temporal and parietal lobes, and cerebellum (p’s < 0.001) as assessed via electrical properties tomography. However, no significant differences were identified in: (1) connectivity within major brain networks as assessed via resting-state functional MRI; (2) cerebral blood flow as assessed via pseudo continuous arterial spin labelling; (3) activity within electroencephalography frequencies (infra-slow [0.03–0.06 Hz], theta [4–8 Hz], alpha [9–12 Hz], or beta [13–25 Hz]); or (4) cognitive (memory) function. Conclusions: This study identified chemical, microstructural and functional brain alterations in response to an acute non-concussive soccer heading task. These alterations appear to be subtle, with some only detected in specific regions, and no corresponding cognitive deficits observed. Nevertheless, our findings suggest that individuals should exercise caution when performing repeated non-concussive head impacts in sport. Trial registration ACTRN12621001355864. Date of registration: 7/10/2021. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382590&isReview=true
Contrasting Geographical Distributions as a Result of Thermal Tolerance and Long-Distance Dispersal in Two Allegedly Widespread Tropical Brown Algae
BackgroundMany tropical marine macroalgae are reported from all three ocean basins, though these very wide distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity. Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic.Methodology/Principal FindingsSpecies delimitation was based on 184 chloroplast encoded psbA sequences, using a Generalized Mixed Yule Coalescent method. Phylogenetic relationships were inferred by analyzing a six-gene dataset. Divergence times were estimated using relaxed molecular clock methods and published calibration data. Distribution ranges of the species were inferred from DNA-confirmed records, complemented with credible literature data and herbarium vouchers. Temperature tolerances of the species were determined by correlating distribution records with local SST values. We found considerable conflict between traditional and DNA-based species definitions. Dictyota crenulata consists of several pseudocryptic species, which have restricted distributions in the Atlantic Ocean and Pacific Central America. In contrast, the pantropical distribution of D. ciliolata is confirmed and linked to its significantly wider temperature tolerance.Conclusions/SignificanceTectonically driven rearrangements of physical barriers left an unequivocal imprint on the current diversity patterns of marine macroalgae, as witnessed by the D. crenulata–complex. The nearly circumglobal tropical distribution of D. ciliolata, however, demonstrates that the north-south oriented continents do not present absolute dispersal barriers for species characterized by wide temperature tolerances
