5,913 research outputs found
On quantum effects near the liquid-vapor transition in helium
The liquid-vapor transition in He-3 and He-4 is investigated by means of
path-integral molecular dynamics and the quantum virial expansion. Both methods
are applied to the critical isobar and the critical isochore. While previous
path-integral simulations have mainly considered the lambda transition and
superfluid regime in He-4, we focus on the vicinity of the critical point and
obtain good agreement with experimental results for the molar volume and the
internal energy down to subcritical temperatures. We find that an effective
classical potential that properly describes the two-particle radial
distribution function exhibits a strong temperature dependence near the
critical temperature. This contrasts with the behavior of essentially classical
systems like xenon, where the effective potential is independent of
temperature. It is conjectured that, owing to this difference in behavior
between classical and quantum-mechanical systems, the crossover behavior
observed for helium in the vicinity of the critical point differs qualitatively
from that of other simple liquids
Thermophysical properties of parahydrogen from the freezing liquid line to 5000 R for pressures to 10000 psia
The tables include entropy, enthalpy, internal energy, density, volume, speed of sound, specific heat, thermal conductivity, viscosity, thermal diffusivity, Prandtl number, and the dielectric constant for 65 isobars. Quantities of special utility in heat transfer and thermodynamic calculations are also included in the isobaric tables. In addition to the isobaric tables, tables for the saturated vapor and liquid are given, which include all of the above properties, plus the surface tension. Tables for the P-T of the freezing liquid, index of refraction, and the derived Joule-Thomson inversion curve are also presented
Implicit Formulations of Bounded-Impulse Trajectory Models for Preliminary Interplanetary Low-Thrust Analysis
The bounded-impulse approach to low-thrust interplanetary trajectory optimization is widely used. In an effort to efficiently implement this approach using NASAs OpenMDAO optimization software, the authors have implemented implicit formulations of the forward shooting/backwards-shooting methods commonly used in bounded-impulse models. These implicit approaches allow for vectorization of the underlying calculations which can significantly reduce runtime in interpreted languages. An implicit approach may be either converged by using an underlying nonlinear solver to converge the state propagation, or as a constraint in an optimizer-driven multiple-shooting approach. Significant computational efficiency gains are realized through the utilization of the modular approach to unified derivatives. Further computational efficiency is achieved by capitalizing on the sparsity of the constraint Jacobian matrix. This work demonstrates that a vectorized multiple-shooting approach for propagating a state-time history is superior in terms of computational efficiency as the number of segments in the state-propagation is increased
Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters
Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re
Analytical Rescaling of Polymer Dynamics from Mesoscale Simulations
We present a theoretical approach to scale the artificially fast dynamics of
simulated coarse-grained polymer liquids down to its realistic value. As
coarse-graining affects entropy and dissipation, two factors enter the
rescaling: inclusion of intramolecular vibrational degrees of freedom, and
rescaling of the friction coefficient. Because our approach is analytical, it
is general and transferable. Translational and rotational diffusion of
unentangled and entangled polyethylene melts, predicted from mesoscale
simulations of coarse-grained polymer melts using our rescaling procedure, are
in quantitative agreement with united atom simulations and with experiments.Comment: 6 pages, 2 figures, 2 table
Chemical Vapour Deposition of Amorphous Ru(P) Thin Films from Ru Trialkylphosphite Hydride Complexes
The ruthenium phosphite hydride complexes H2Ru(P(OR)(3))(4) (R = Me (1), Et (2), Pr-i (3)) were used as CVD precursors for the deposition of films of amorphous ruthenium-phosphorus alloys. The as-deposited films were X-ray amorphous and XPS analysis revealed that they were predominantly comprised of Ru and P in zero oxidation states. XPS analysis also showed the presence of small amounts of oxidized ruthenium and phosphorus. The composition of the films was found to depend on ligand chemistry as well as the deposition conditions. The use of H-2 as the carrier gas had the effect of increasing the relative concentrations of P and O for all films. Annealing films to 700 degrees C under vacuum produced films of polycrystalline hcp Ru while a flowing stream of H-2 resulted in polycrystalline hcp RuP.Welch Foundation F-816Petroleum Research FundAmerican Chemical Society 47014-ACSNSF 0741973Chemistr
Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen
Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed
Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2
Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined
Multiscale Modeling of Binary Polymer Mixtures: Scale Bridging in the Athermal and Thermal Regime
Obtaining a rigorous and reliable method for linking computer simulations of
polymer blends and composites at different length scales of interest is a
highly desirable goal in soft matter physics. In this paper a multiscale
modeling procedure is presented for the efficient calculation of the static
structural properties of binary homopolymer blends. The procedure combines
computer simulations of polymer chains on two different length scales, using a
united atom representation for the finer structure and a highly coarse-grained
approach on the meso-scale, where chains are represented as soft colloidal
particles interacting through an effective potential. A method for combining
the structural information by inverse mapping is discussed, allowing for the
efficient calculation of partial correlation functions, which are compared with
results from full united atom simulations. The structure of several polymer
mixtures is obtained in an efficient manner for several mixtures in the
homogeneous region of the phase diagram. The method is then extended to
incorporate thermal fluctuations through an effective chi parameter. Since the
approach is analytical, it is fully transferable to numerous systems.Comment: in press, 13 pages, 7 figures, 6 table
- …
