1,375 research outputs found
Tensin links energy metabolism to extracellular matrix assembly.
The regulation of integrin function is key to fundamental cellular processes, including cell migration and extracellular matrix (ECM) assembly. In this issue, Georgiadou et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201609066) report that the metabolic sensor adenosine monophosphate-activated protein kinase influences tensin production to regulate α5β1-integrin and fibrillar adhesion assembly and thus reveal an important connection between energy metabolism and ECM assembly
Bimetallic Pt(II)-bipyridyl-diacetylide/Ln(III) tris-diketonate adducts based on a combination of coordinate bonding and hydrogen bonding between the metal fragments: syntheses, structures and photophysical properties
The luminescent Pt(II) complex [Pt(4,4'-Bu-t(2)-bipy){CC-(5-pyrimidinyl)}(2)] (1) was prepared by coupling of [Pt(4,4'-Bu-t(2)-bipy)Cl-2] with 5-ethynyl-pyrimidine, and contains two pyrimidinyl units pendant from a Pt(H) bipyridyl diacetylide core; it shows luminescence at 520 nm which is typical of Pt(II) luminophores of this type. Reaction with [Ln(hfac)(3)(H2O)(2)] (hfac = anion of hexafluoroacetylacetone) affords as crystalline solids the compounds [1 center dot {Ln(hfac)(3)(H2O)}{Ln(hfac)(3)(H2O)(2)}] (Ln = Nd, Gd, Er, Yb), in which the {Ln(hfac)(3)(H2O)} unit is coordinated to one pyrimidine ring via an N atom, whereas the {Ln(hfac)(3)(H2O)(2)} unit is associated with two N atoms, one from each pyrimidine ring of 1, via N center dot center dot center dot HOH hydrogen-bonding interactions involving the coordinated water ligands on the lanthanide centre. Solution spectroscopic studies show that the luminescence of 1 is partly quenched on addition of [Ln(hfac)(3)(H2O)(2)] (Ln = Er, Nd) by formation of Pt(II)/Ln(III) adducts in which Pt(II)-> Ln(III) photoinduced energy-transfer occurs to the low-lying f-f levels of the Ln(Ill) centre. Significant quenching occurs with both Er(Ill) and Nd(III) because both have several f-f states which match well the (MLCT)-M-3 emission energy of 1. Time-resolved luminescence studies show that Pt(II)-Er(III) energy-transfer (7.0 x 10(7) M-1) is around three times faster than Pt(II)-> Nd(III) energy-transfer (approximate to 2 x 10(7) M-1) over the same distance because the luminescence spectrum of l overlaps better with the absorption spectrum of Er(111) than with Nd(III). In contrast Yb(111) causes no significant quenching of 1 because it has only a single f-f excited level which is a poor energy match for the Pt(II)-based excited state
Bis(4-cyanophenolato)[hydrotris(3,5-dimethylpyrazolyl)borato]nitrosylmolybdenum(II)–4-hydroxybenzonitrile–dichloromethane (1/1/1)
In the title compound, [Mo(C15H22BN6)(C7H4NO)2(NO)]·C7H5NO·CH2Cl2, the central MoII atom adopts a distorted cis-MoO2N4 octahedral geometry with the hydrotris(3,5-dimethylpyrazolylborate) anion attached to the metal in an N,N′,N′′-tridentate tripodal coordination mode. Two O-bonded 4-cyanophenolate anions and a nitrosyl cation complete the coodination of the MoII atom. Two intramolecular C—H⋯O and one C—H⋯N hydrogen bonds help to establish the configuration of the complex molecule. The crystal structure is stabilized by intermolecular C—H⋯N and C—H⋯O hydrogen bonds
(4-tert-Butylpyridine)chlorido[hydrotris(3,5-dimethylpyrazol-1-yl)borato]nitrosylmolybdenum(I) dichloromethane monosolvate
In the title compound, [Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2, the MoI atom adopts a distorted MoClN5 octahedral geometry with the hydrotris(3,5-dimethylpyrazolyl)borate anion in an N,N′,N′′-tridentate tripodal (facial) coordination mode. A 4-tert-butylpyrine ligand, chloride anion and a nitrosyl cation complement the coodination of the MoI atom and an intramolecular C—H⋯Cl hydrogen bond helps to stabilize the configuration of the complex molecule. The packing is stabilized by an intermolecular C—H⋯Cl hydrogen bond involving the complex molecule and the CH2Cl2 solvent molecule
Divide and Conquer: High Resolution Structural Information on TRP Channel Fragments
Understanding how proteins facilitate signaling and substrate transport across biological membranes is an important frontier of structural biology. Membrane proteins are the doors and windows of cells: many membrane proteins are gates of entry into or exit from cells or cellular compartments, and others allow cells to sense their environment. One important multifunctional family of membrane proteins is the transient receptor potential (TRP) family of ion channels. TRP channels have recently been the subject of multiple structural analyses, both low resolution electron microscopy studies (reviewed by Moiseenkova-Bell and Wensel in this issue [p. 239]) and the divide and conquer approach of determining high resolution crystal structures of channel fragments, reviewed here.Molecular and Cellular Biolog
Metallorganische Lewis-Säuren. L
Die Metallorganischen Lewis-Säuren Ph3PAuNO3 (1) und (CO)5ReFBF3 (2) setzen sich mit den Dithiolato-Metallkomplexen (Bu4N)2[M(mnt)2] (mnt = maleonitrildithiolato, M = Ni, Cu, Pt, Zn) und (Bu4N)2[Zn(dmit)2] (dmit = dimercaptoisotrithiono) zu den Komplexen (Ph3PAu)2mnt (3), (Bu4N)[Ph3PAu(mnt)] (4), (Ph3PAu)2Pt(mnt)2 (5) und (Ph3PAu)2dmit (10) bzw. [(CO)5Re]2Ni(mnt)2 (6), (Bu4N){[(CO)5Re]M(mnt)2} (M = Ni, Pt, 7, 8), [(CO)5Re]2(mnt)2 (9) und [(CO)5Re]2Ni(dmit)2 (11) um. Die Strukturen von 3, 4 und 5 wurden röntgenographisch bestimmt. In 4 ist der Chelatligand symmetrisch an das AuI-Atom gebunden. Im Kristall von 3 entstehen durch schwache AuAu-Wechselwirkungen Ketten (dAuAu = 309 pm). Die trans-anti-Konfiguration im Komplex 5 wird aus sterischen Gründen auch für die analogen Komplexe 6 und 11 angenommen. Während 1 mit K2[M(dto)2] (dto = dithiooxalato, M = Pd, Pt) die erwarteten Bis(triphenylphosphangold)-Addukte 12 und 13 bildet, ergibt 2 [(CO)5Re]2 (dto)2 (14) als stabiles Endprodukt. Das Triphenylphosphangold-Analogon 15 erhält man durch Reaktion von 1 mit K2dto. [(CO)5Re]2FeNO(dto)2 (16) kann als primäres Produkt der Reaktion von 2 mit [Fe(NO)(dto)2]2- isoliert werden. Re(CO)5+ und Ph3PAu+ können an die verbrückenden S-Atome von [(ON)2Fe(-S)2Fe(NO)2]2- unter Bildung von 17 und 18 addiert werden
X-ray absorption spectroscopy systematics at the tungsten L-edge
A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W<sup>0</sup>(PMe<sub>3</sub>)<sub>6</sub>], [W<sup>II</sup>Cl<sub>2</sub>(PMePh<sub>2</sub>)<sub>4</sub>], [W<sup>III</sup>Cl<sub>2</sub>(dppe)<sub>2</sub>][PF<sub>6</sub>] (dppe = 1,2-bis(diphenylphosphino)ethane), [W<sup>IV</sup>Cl<sub>4</sub>(PMePh<sub>2</sub>)<sub>2</sub>], [W<sup>V</sup>(NPh)Cl<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>], and [W<sup>VI</sup>Cl<sub>6</sub>] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L<sub>3,2</sub>-edges and the L<sub>1</sub> rising-edge energy with metal Z<sub>eff</sub>, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>] and [W<sup>IV</sup>(mdt)<sub>2</sub>(CN)<sub>2</sub>]<sup>2–</sup> (mdt<sup>2–</sup> = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W<sup>IV</sup> species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z<sub>eff</sub> in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z<sub>eff</sub> or, as in the case of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>], add other subtlety by modulating the redox level of other ligands in the coordination sphere
AMPK negatively regulates tensin-dependent integrin activity
Tight regulation of integrin activity is paramount for dynamic cellular functions such as cell matrix adhesion and mechanotransduction. Integrin activation is achieved through intracellular interactions at the integrin cytoplasmic tails and through integrin-ligand binding. In this study, we identify the metabolic sensor AMP-activated protein kinase (AMPK) as a beta 1-integrin inhibitor in fibroblasts. Loss of AMPK promotes beta 1-integrin activity, the formation of centrally located active beta 1-integrin- and tensin-rich mature fibrillar adhesions, and cell spreading. Moreover, in the absence of AMPK, cells generate more mechanical stress and increase fibronectin fibrillogenesis. Mechanistically, we show that AMPK negatively regulates the expression of the integrin-binding proteins tensin1 and tensin3. Transient expression of tensins increases beta 1-integrin activity, whereas tensin silencing reduces integrin activity in fibroblasts lacking AMPK. Accordingly, tensin silencing in AMPK-depleted fibroblasts impedes enhanced cell spreading, traction stress, and fibronectin fiber formation. Collectively, we show that the loss of AMPK up-regulates tensins, which bind beta 1-integrins, supporting their activity and promoting fibrillar adhesion formation and integrin-dependent processes.Peer reviewe
Structural, electrical, magnetic, and optical properties of bis-benzene-1,2-dithiolato-Au(IV) crystals
Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.</p
- …
