1,779 research outputs found

    Reassessing Public Meetings As Participation in Risk Management Decisions

    Get PDF
    Using a U.S. case study, Ms. McComas and Dr. Scherer discuss how reliance on public meetings as tools for risk communication in public policy decisions affects relationships between stakeholders and risk managers

    The average magnetic field draping and consistent plasma properties of the Venus magnetotail

    Get PDF
    A new technique has been developed to determine the average structure of the Venus magnetotail (in the range from −8 Rv to −12 Rv) from the Pioneer Venus magnetometer observations. The spacecraft position with respect to the cross-tail current sheet is determined from an observed relationship between the field-draping angle and the magnitude of the field referenced to its value in the nearby magnetosheath. This allows us statistically to remove the effects of tail flapping and variability of draping for the first time and thus to map the average field configuration in the Venus tail. From this average configuration we calculate the cross-tail current density distribution and J × B forces. Continuity of the tangential electric field is utilized to determine the average variations of the X-directed velocity which is shown to vary from −250 km/s at −8 Rv to −470 km/s at −12 Rv. From the calculated J × B forces, plasma velocity, and MHD momentum equation the approximate plasma acceleration, density, and temperature in the Venus tail are determined. The derived ion density is approximately ∼0.07 p+/cm³ (0.005 O+/cm³) in the lobes and ∼0.9 p+/cm³ (0.06 O+/cm³) in the current sheet, while the derived approximate average plasma temperature for the tail is ∼6×106 K for a hydrogen plasma or ∼9×107 K for an oxygen plasma

    Upper Pennsylvanian Compression Floras of the 7-11 Mine, Columbiana County, Northeastern Ohio

    Get PDF
    Author Institution: Department of Botany, Ohio UniversityTwo compression floras have been discovered below the Brush Creek marine unit (lower Conemaugh) in Columbiana County, Ohio. One flora is preserved in freshwater ironstone beds 6 m below the Brush Creek and contains abundant pteridosperm and sphenopsid elements. The assemblage includes Sphenophyllum oblongifolium, Pecopteris candolleana, Danaeites emersonii and Odontopteris brardii, taxa previously recorded from younger strata. The second assemblage occurs within a 1.5-m-thick argillaceous, freshwater shale directly below the Brush Creek and yields abundant lycopod, cordaite, and conifer remains. The latter elements, some of which are permineralized with pyrite, represent the earliest occurrence of conifers in the eastern United States known to date

    A possible generation mechanism for the IBEX ribbon from outside the heliosphere

    Full text link
    The brightest and most surprising feature in the first all-sky maps of Energetic Neutral Atoms (ENA) emissions (0.2-6 keV) produced by the Interstellar Boundary Explorer (IBEX) is an almost circular ribbon of a ~140{\deg} opening angle, centered at (l,b) = (33{\deg}, 55{\deg}), covering the part of the celestial sphere with the lowest column densities of the Local Interstellar Cloud (LIC). We propose a novel interpretation of the IBEX results based on the idea of ENA produced by charge-exchange between the neutral H atoms at the nearby edge of the LIC and the hot protons of the Local Bubble (LB). These ENAs can reach the Sun's vicinity because of very low column density of the intervening LIC material. We show that a plane-parallel or slightly curved interface layer of contact between the LIC H atoms (n_H = 0.2 cm^-3, T = 6000-7000 K) and the LB protons (n_p = 0.005 cm^-3, T ~ 10^6 K), together with indirect contribution coming from multiply-scattered ENAs from the LB, may be able to explain both the shape of the ribbon and the observed intensities provided that the edge is < (500-2000) AU away, the LIC proton density is (correspondingly) < (0.04-0.01) cm^-3, and the LB contains ~1% of non-thermal protons over the IBEX energy range. If this model is correct, then IBEX, for the first time, has imaged in ENAs a celestial object from beyond the confines of the heliosphere and can directly diagnose the plasma conditions in the LB.Comment: Accepted by Ap.J.Lett

    Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?

    Full text link
    Coronal Mass Ejections continuously drag closed magnetic field lines away from the Sun, adding new flux to the interplanetary magnetic field (IMF). We propose that the outward-moving blobs that have been observed in helmet streamers are evidence of ongoing, small-scale reconnection in streamer current sheets, which may play an important role in the prevention of an indefinite buildup of the IMF. Reconnection between two open field lines from both sides of a streamer current sheet creates a new closed field line, which becomes part of the helmet, and a disconnected field line, which moves outward. The blobs are formed by plasma from the streamer that is swept up in the trough of the outward moving field line. We show that this mechanism is supported by observations from SOHO/LASCO. Additionally, we propose a thorough statistical study to quantify the contribution of blob formation to the reduction of the IMF, and indicate how this mechanism may be verified by observations with SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters; uses AASTe

    Distance to the IBEX Ribbon Source Inferred from Parallax

    Full text link
    Maps of Energetic Neutral Atom (ENA) fluxes obtained from Interstellar Boundary Explorer (IBEX) observations revealed a bright structure extending over the sky, subsequently dubbed the IBEX ribbon. The ribbon had not been expected from the existing models and theories prior to IBEX, and a number of mechanisms have since been proposed to explain the observations. In these mechanisms, the observed ENAs emerge from source plasmas located at different distances from the Sun. Since each part of the sky is observed by IBEX twice during the year from opposite sides of the Sun, the apparent position of the ribbon as observed in the sky is shifted due to parallax. To determine the ribbon parallax, we found the precise location of the maximum signal of the ribbon observed in each orbital arc. The obtained apparent positions were subsequently corrected for the Compton-Getting effect, gravitational deflection, and radiation pressure. Finally, we selected a part of the ribbon where its position is similar between the IBEX energy passbands. We compared the apparent positions obtained from the viewing locations on the opposite sides of the Sun, and found that they are shifted by a parallax angle of 0.41±0.150.41^\circ\pm0.15^\circ, which corresponds to a distance of 14038+84140^{+84}_{-38} AU. This finding supports models of the ribbon with the source located just outside the heliopause.Comment: 26 pages, 10 figures, 1 table, submitted to Ap

    Assessment of detectability of neutral interstellar deuterium by IBEX observations

    Full text link
    The abundance of deuterium in the interstellar gas in front of the Sun gives insight into the processes of filtration of neutral interstellar species through the heliospheric interface and potentially into the chemical evolution of the Galactic gas. We investigate the possibility of detection of neutral interstellar deuterium at 1 AU from the Sun by direct sampling by the Interstellar Boundary Explorer (IBEX). We simulate the flux of neutral interstellar D at IBEX for the actual measurement conditions. We assess the number of interstellar D atom counts expected during the first three years of IBEX operation. We also simulate observations expected during an epoch of high solar activity. In addition, we calculate the expected counts of D atoms from the thin terrestrial water layer, sputtered from the IBEX-Lo conversion surface by neutral interstellar He atoms. Most D counts registered by IBEX-Lo are expected to originate from the water layer, exceeding the interstellar signal by 2 orders of magnitude. However, the sputtering should stop once the Earth leaves the portion of orbit traversed by interstellar He atoms. We identify seasons during the year when mostly the genuine interstellar D atoms are expected in the signal. During the first 3 years of IBEX operations about 2 detectable interstellar D atoms are expected. This number is comparable with the expected number of sputtered D atoms registered during the same time intervals. The most favorable conditions for the detection occur during low solar activity, in an interval including March and April each year. The detection chances could be improved by extending the instrument duty cycle, e.g., by making observations in the special deuterium mode of IBEX-Lo.Comment: Accepted for Astronomy & Astrophysic
    corecore