871 research outputs found

    Gauge field theories with covariant star-product

    Full text link
    A noncommutative gauge theory is developed using a covariant star-product between differential forms defined on a symplectic manifold, considered as the space-time. It is proven that the field strength two-form is gauge covariant and satisfies a deformed Bianchi identity. The noncommutative Yang-Mills action is defined using a gauge covariant metric on the space-time and its gauge invariance is proven up to the second order in the noncommutativity parameter.Comment: Dedicated to Ioan Gottlieb on the occasion of his 80th birthday anniversary. 12 page

    Multi-cell soft errors at the 16-nm FinFET technology node

    Get PDF

    Predicting participation in group parenting education in an Australian sample: The role of attitudes, norms, and control factors

    Get PDF
    We examined the theory of planned behavior (TPB) in predicting intentions to participate in group parenting education. One hundred and seventy-six parents (138 mothers and 38 fathers) with a child under 12 years completed TPB items assessing attitude, subjective norms, perceived behavioral control (PBC), and two additional social influence variables (self-identity and group norm). Regression analyses supported the TPB predictors of participation intentions with self-identity and group norm also significantly predicting intentions. These findings offer preliminary support for the TPB, along with additional sources of social influence, as a useful predictive model of participation in parenting education

    Norm estimates of complex symmetric operators applied to quantum systems

    Full text link
    This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\"odinger operators appearing in the complex scaling theory of resonances

    Dissociative electron attachment to the H2O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model

    Get PDF
    We report the results of a first-principles study of dissociative electron attachment to H2O. The cross sections are obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential-energy surfaces for the three (doublet B1, doublet A1, and doublet B2) electronic Feshbach resonances involved in this process. These three metastable states of H2O- undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the B1 and A1 states as well as the conical intersection between the A1 and B2 states into our treatment. The nuclear dynamics are inherently multidimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.Comment: Corrected version of Phys Rev A 75, 012711 (2007

    Dissociative electron attachment to the H2O molecule. I. Complex-valued potential-energy surfaces for the 2B1, 2A1, and 2B2 metastable states of the water anion

    Full text link
    We present the results of calculations defining global, three-dimensional representations of the complex-valued potential-energy surfaces of the doublet B1, doublet A1, and doublet B2 metastable states of the water anion that underlie the physical process of dissociative electron attachment to water. The real part of the resonance energies is obtained from configuration-interaction calculations performed in a restricted Hilbert space, while the imaginary part of the energies (the widths) is derived from complex Kohn scattering calculations. A diabatization is performed on the 2A1 and 2B2 surfaces, due to the presence of a conical intersection between them. We discuss the implications that the shapes of the constructed potential-energy surfaces will have upon the nuclear dynamics of dissociative electron attachment to H2O. This work originally appeared as Phys Rev A 75, 012710 (2007). Typesetting errors in the published version have been corrected here.Comment: Corrected version of PRA 75, 012710 (2007

    Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons

    Get PDF
    The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.Comment: 7 pages, 8 Postscript figure

    Resonance Lifetimes from Complex Densities

    Full text link
    The ab-initio calculation of resonance lifetimes of metastable anions challenges modern quantum-chemical methods. The exact lifetime of the lowest-energy resonance is encoded into a complex "density" that can be obtained via complex-coordinate scaling. We illustrate this with one-electron examples and show how the lifetime can be extracted from the complex density in much the same way as the ground-state energy of bound systems is extracted from its ground-state density

    Noncommutative Differential Forms on the kappa-deformed Space

    Full text link
    We construct a differential algebra of forms on the kappa-deformed space. For a given realization of the noncommutative coordinates as formal power series in the Weyl algebra we find an infinite family of one-forms and nilpotent exterior derivatives. We derive explicit expressions for the exterior derivative and one-forms in covariant and noncovariant realizations. We also introduce higher-order forms and show that the exterior derivative satisfies the graded Leibniz rule. The differential forms are generally not graded-commutative, but they satisfy the graded Jacobi identity. We also consider the star-product of classical differential forms. The star-product is well-defined if the commutator between the noncommutative coordinates and one-forms is closed in the space of one-forms alone. In addition, we show that in certain realizations the exterior derivative acting on the star-product satisfies the undeformed Leibniz rule.Comment: to appear in J. Phys. A: Math. Theo

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1
    corecore