88 research outputs found

    Efficient markets: land and slave prices in Henrico County, Virginia, 1782-1863

    Get PDF
    Asset market efficiency fosters rational decisions on allocating resources, both individually and socially, and thus helps determine individuals' wealth accumulation and nations' economic growth. To date, however, there are little systematic data available for, and even less analysis of, US capital markets during the late eighteenth and mid-nineteenth centuries, a period of great transformation and growth. This paper is a preliminary exploration of market efficiency in two early US asset markets, looking at prices of land and slaves in Henrico County, Virginia, from the 1780s to the 1860s. Our hypothesis tests on both the price of and returns to Henrico County land and slaves provide evidence that land and slave markets in late eighteenth and early nineteenth century US were weak-form efficient, suggesting that available information was quickly and fully incorporated into prices in these early North American asset markets.efficient markets, random walk, Dickey-Fuller, KPSS test, slave prices, land prices

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    Habitat and fishing control grazing potential on coral reefs

    Get PDF
    Herbivory is a key process on coral reefs, which, through grazing of algae, can help sustain coral‐dominated states on frequently disturbed reefs and reverse macroalgal regime shifts on degraded ones. Our understanding of herbivory on reefs is largely founded on feeding observations at small spatial scales, yet the biomass and structure of herbivore populations is more closely linked to processes which can be highly variable across large areas, such as benthic habitat turnover and fishing pressure. Though our understanding of spatiotemporal variation in grazer biomass is well developed, equivalent macroscale approaches to understanding bottom‐up and top‐down controls on herbivory are lacking. Here, we integrate underwater survey data of fish abundances from four Indo‐Pacific island regions with herbivore feeding observations to estimate grazing rates for two herbivore functions, cropping (which controls turf algae) and scraping (which promotes coral settlement by clearing benthic substrate), for 72 coral reefs. By including a range of reef states, from coral to algal dominance and heavily fished to remote wilderness areas, we evaluate the influences of benthic habitat and fishing on the grazing rates of fish assemblages. Cropping rates were primarily influenced by benthic condition, with cropping maximized on structurally complex reefs with high substratum availability and low macroalgal cover. Fishing was the primary driver of scraping function, with scraping rates depleted at most reefs relative to remote, unfished reefs, though scraping did increase with substratum availability and structural complexity. Ultimately, benthic and fishing conditions influenced herbivore functioning through their effect on grazer biomass, which was tightly correlated to grazing rates. For a given level of biomass, we show that grazing rates are higher on reefs dominated by small‐bodied fishes, suggesting that grazing pressure is greatest when grazer size structure is truncated. Stressors which cause coral declines and clear substrate for turf algae will likely stimulate increases in cropping rates, in both fished and protected areas. In contrast, scraping functions are already impaired at reefs inhabited by people, particularly where structural complexity has collapsed, indicating that restoration of these key processes will require scraper biomass to be rebuilt towards wilderness levels

    Microbiome dynamics in the tissue and mucus of acroporid corals differ in relation to host and environmental parameters

    Get PDF
    Corals are associated with diverse microbial assemblages; however, the spatial-temporal dynamics of intra-species microbial interactions are poorly understood. The coral-associated microbial community varies substantially between tissue and mucus microhabitats; however, the factors controlling the occurrence, abundance, and distribution of microbial taxa over time have rarely been explored for different coral compartments simultaneously. Here, we test (1) differentiation in microbiome diversity and composition between coral compartments (surface mucus and tissue) of two Acropora hosts (A. tenuis and A. millepora) common along inshore reefs of the Great Barrier Reef, as well as (2) the potential linkage between shifts in individual coral microbiome families and underlying host and environmental parameters. Amplicon based 16S ribosomal RNA gene sequencing of 136 samples collected over 14 months, revealed significant differences in bacterial richness, diversity and community structure among mucus, tissue and the surrounding seawater. Seawater samples were dominated by members of the Synechococcaceae and Pelagibacteraceae bacterial families. The mucus microbiome of Acropora spp. was dominated by members of Flavobacteriaceae, Synechococcaceae and Rhodobacteraceae and the tissue was dominated by Endozoicimonaceae. Mucus microbiome in both Acropora species was primarily correlated with seawater parameters including levels of chlorophyll a, ammonium, particulate organic carbon and the sum of nitrate and nitrite. In contrast, the correlation of the tissue microbiome to the measured environmental (i.e., seawater parameters) and host health physiological factors differed between host species, suggesting host-specific modulation of the tissue-associated microbiome to intrinsic and extrinsic factors. Furthermore, the correlation between individual coral microbiome members and environmental factors provides novel insights into coral microbiome-by-environment dynamics and hence has potential implications for current reef restoration and management efforts (e.g. microbial monitoring and observatory programs).Portuguese Foundation for Science and Technology: UIDB/04326/2020/ SFRH/BDP/110285/2015 SFRH/BSAB/150485/2019info:eu-repo/semantics/publishedVersio

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordtribute to global conservation targets, we review outcomes of the last decade of marine conservation research in the British Indian Ocean Territory (BIOT), one of the largest MPAs in the world. The BIOT MPA consists of the atolls of the Chagos Archipelago, interspersed with and surrounded by deep oceanic waters. Islands around the atoll rims serve as nesting grounds for sea birds. Extensive and diverse shallow and mesophotic reef habitats provide essential habitat and feeding grounds for all marine life, and the absence of local human impacts may improve recovery after coral bleaching events. Census data have shown recent increases in the abundance of sea turtles, high numbers of nesting seabirds and high fsh abundance, at least some of which is linked to the lack of recent harvesting. For example, across the archipelago the annual number of green turtle clutches (Chelonia mydas) is~20,500 and increasing and the number of seabirds is ~1 million. Animal tracking studies have shown that some taxa breed and/or forage consistently within the MPA (e.g. some reef fshes, elasmobranchs and seabirds), suggesting the MPA has the potential to provide long-term protection. In contrast, post-nesting green turtles travel up to 4000 km to distant foraging sites, so the protected beaches in the Chagos Archipelago provide a nesting sanctuary for individuals that forage across an ocean basin and several geopolitical borders. Surveys using divers and underwater video systems show high habitat diversity and abundant marine life on all trophic levels. For example, coral cover can be as high as 40–50%. Ecological studies are shedding light on how remote ecosystems function, connect to each other and respond to climate-driven stressors compared to other locations that are more locally impacted. However, important threats to this MPA have been identifed, particularly global heating events, and Illegal, Unreported and Unregulated (IUU) fshing activity, which considerably impact both reef and pelagic fshes.Bertarelli Foundatio

    Modularity and predicted functions of the global sponge-microbiome network

    Get PDF
    Defining the organisation of species interaction networks and unveiling the processes behind their assembly is fundamental to understanding patterns of biodiversity, community stability and ecosystem functioning. Marine sponges host complex communities of microorganisms that contribute to their health and survival, yet the mechanisms behind microbiome assembly are largely unknown. We present the global marine sponge-microbiome network and reveal a modular organisation in both community structure and function. Modules are linked by a few sponge species that share microbes with other species around the world. Further, we provide evidence that abiotic factors influence the structuring of the sponge microbiome when considering all microbes present, but biotic interactions drive the assembly of more intimately associated 'core' microorganisms. These findings suggest that both ecological and evolutionary processes are at play in host-microbe network assembly. We expect mechanisms behind microbiome assembly to be consistent across multicellular hosts throughout the tree of life
    corecore