37 research outputs found
T1 mapping in cardiac MRI
Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice
Isolation and characterisation of discoid granules from the tegument of adult Schistosoma mansoni
Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development
Nonlinear negotiation approaches for complex-network optimization: a study inspired by Wi-Fi channel assignment
In this paper, we study a problem family inspired by a prominent network optimization problem (graph coloring), enriched and extended towards a real-world application (Wi-Fi channel assignment). We propose a utility model based on this scenario, and we generate an extensive set of test cases, against which we run both a complete information optimizer and two nonlinear negotiation approaches {a hill-climber and an approach based on simulated annealing (SA). We show that, for the larger-scale scenarios, the SA negotiation approach significantly outperforms the optimizer while running in roughly one tenth of the computation time. Also, we point out interesting patterns regarding the relative performance of the two approaches depending on the properties of the underlying graphs.Ministerio de Economía y CompetitividadUniversidad de Alcal
