7,858 research outputs found
Channel noise induced stochastic facilitation in an auditory brainstem neuron model
Neuronal membrane potentials fluctuate stochastically due to conductance
changes caused by random transitions between the open and close states of ion
channels. Although it has previously been shown that channel noise can
nontrivially affect neuronal dynamics, it is unknown whether ion-channel noise
is strong enough to act as a noise source for hypothesised noise-enhanced
information processing in real neuronal systems, i.e. 'stochastic
facilitation.' Here, we demonstrate that biophysical models of channel noise
can give rise to two kinds of recently discovered stochastic facilitation
effects in a Hodgkin-Huxley-like model of auditory brainstem neurons. The
first, known as slope-based stochastic resonance (SBSR), enables phasic neurons
to emit action potentials that can encode the slope of inputs that vary slowly
relative to key time-constants in the model. The second, known as inverse
stochastic resonance (ISR), occurs in tonically firing neurons when small
levels of noise inhibit tonic firing and replace it with burst-like dynamics.
Consistent with previous work, we conclude that channel noise can provide
significant variability in firing dynamics, even for large numbers of channels.
Moreover, our results show that possible associated computational benefits may
occur due to channel noise in neurons of the auditory brainstem. This holds
whether the firing dynamics in the model are phasic (SBSR can occur due to
channel noise) or tonic (ISR can occur due to channel noise).Comment: Published by Physical Review E, November 2013 (this version 17 pages
total - 10 text, 1 refs, 6 figures/tables); Associated matlab code is
available online in the ModelDB repository at
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=15148
Hypervelocity impact microfoil perforations in the LEO space environment (LDEF, MAP AO-023 experiment)
The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4
A possible explanation for the inconsistency between the Giotto grain mass distribution and ground-based observations
Giotto measured the in situ Halley dust grain mass distribution with 2 instruments, Particle Impact Analyzer and Dust Impact Detection System (DIDSY), as well as the total intercepted mass from the deceleration of the spacecraft (Giotto Radio-Science Experiment, GRE). Ground based observations made shortly before encounter have fluxes much higher than would be predicted from Giotto data. It is concluded that Giotto DIDSY and GRE data represent observations of dust originating from a narrow track along the nucleus. They are consistent with ground based data, if assumptions are made about the level of activity along this track. The actual size distribution that should be used for modeling of the whole coma should not include the large mass excess actually observed by Giotto. Extrapolation of the small grain data should be used, since for these grains the velocity dispersion is low and temporal changes at the nucleus would not affect the shape of the mass distribution
Recommended from our members
Preliminary results from the dust flux monitoring instrument during the encounter of Stardust spacecraft with Wild-2 comet
On January 2, 2004, the Stardust spacecraft successfully encountered the Wild-2 comet. The Dust Flux Monitoring Instrument (DFMI) provided quantitative measurements of dust particle fluxes and particle mass distributions throughout the entire flythrough
The in-situ cometary particulate size distribution measured for one comet: P/Halley
The close approach of Giotto to comet Halley during its 1986 apparition offered an opportunity to study the particulate mass distribution to masses of up to one gram. Data acquired by the front end channels of the highly sensitive mass spectrometer PIA and the dust shield detector system, DIDSY, provide definition to the detected distribution as close as 1000 km to the nucleus. Dynamic motion of the particulates after emission leads to a spatial differentiation affecting the size distribution in several forms: (1) ejecta velocity dispersion; (2) radiation pressure; (3) varying heliocentric distance; and (4) anisotropic nucleus emission. Transformation of the in-situ distribution from PIA and DIDSY weighted heavily by the near-nucleus fluxes leads to a presumed nucleus distribution. The data lead to a puzzling distribution at large masses, not readily explained in an otherwise monotonous power law distribution. Although temporal changes in nucleus activity could and do modify the in-situ size distribution, such an explanation is not wholly possible, because the same form is observed at differing locations in the coma where the time of flight from the nucleus greatly varies. Thus neither a general change in comet activity nor spatial variations lead to a satisfactory explanation
An evaluation of the impact of introducing a new model for recognising and responding to early signs of deterioration in patients at the Rotherham NHS Foundation Trust
Aerothermal modeling program, phase 2. Element C: Fuel injector-air swirl characterization
The main objectives of the NASA-sponsored Aerothermal Modeling Program, Phase 2--Element C, are experimental evaluation of the air swirler interaction with a fuel injector in a simulated combustor chamber, assessment of the current two-phase models, and verification of the improved spray evaporation/dispersion models. This experimental and numerical program consists of five major tasks. Brief descriptions of the five tasks are given
Bad expression influences time to androgen escape in prostate cancer
<b>OBJECTIVE</b>: To assess the role of selected downstream Bcl-2 family members (Bad, Bax, Bcl-2 and Bcl-xL) in the development of androgen-independent prostate cancer (AIPC), as androgen-deprivation therapy is the treatment of choice in advanced prostate cancer, yet patients generally relapse and progress to an AI state within 18–24 months.
<b>PATIENTS, MATERIALS AND METHODS</b>: The patient cohort was established by retrospectively selecting patients with prostate cancer who had an initial response to androgen-deprivation therapy, but subsequently relapsed with AIPC. In all, 58 patients with prostate cancer were included with matched androgen-dependent (AD) and AI prostate tumours available for immunohistochemical analysis; two independent observers using a weighted-histoscore method scored the staining. Changes in Bad, Bax, Bcl-2 and Bcl-xL expression during transition to AIPC were evaluated and then correlated to known clinical variables.
<b>RESULTS</b>: High Bad expression in AD tumours was associated with an increased time to biochemical relapse (<i>P</i> = 0.007) and a trend towards improved overall survival (<i>P</i> = 0.053). There were also trends towards a decrease in Bad (<i>P</i> = 0.068) and Bax (<i>P</i> = 0.055) expression with progression to AIPC. There were no significant results for Bcl-2 or Bcl-xL.
<b>CONCLUSION</b>: There is evidence to suggest that Bad expression levels at diagnosis influence time to biochemical relapse and overall survival, and that levels of pro-apoptotic proteins Bad and Bax fall during AIPC development. Bad might therefore represent a possible positive prognostic marker and potential therapeutic target for AIPC in the future
- …
