6,040 research outputs found
Periodic discrete conformal maps
A discrete conformal map (DCM) maps the square lattice to the Riemann sphere
such that the image of every irreducible square has the same cross-ratio. This
paper shows that every periodic DCM can be determined from spectral data (a
hyperelliptic compact Riemann surface, called the spectral curve, equipped with
some marked points). Each point of the map corresponds to a line bundle over
the spectral curve so that the map corresponds to a discrete subgroup of the
Jacobi variety. We derive an explicit formula for the generic maps using
Riemann theta functions, describe the typical singularities and give a
geometric interpretation of DCM's as a discrete version of the Schwarzian KdV
equation. As such, the DCM equation is a discrete soliton equation and we
describe the dressing action of a loop group on the set of DCM's. We also show
that this action corresponds to a lattice of isospectral Darboux transforms for
the finite gap solutions of the KdV equation.Comment: 41 pages, 10 figures, LaTeX2
First comparison of wave observations from CoMP and AIA/SDO
Waves have long been thought to contribute to the heating of the solar corona
and the generation of the solar wind. Recent observations have demonstrated
evidence of quasi-periodic longitudinal disturbances and ubiquitous transverse
wave propagation in many different coronal environments. This paper
investigates signatures of different types of oscillatory behaviour, both above
the solar limb and on-disk, by comparing findings from the Coronal
Multi-channel Polarimeter (CoMP) and the Atmospheric Imaging Assembly (AIA) on
board the Solar Dynamics Observatory (SDO) for the same active region. We study
both transverse and longitudinal motion by comparing and contrasting
time-distance images of parallel and perpendicular cuts along/across active
region fan loops. Comparisons between parallel space-time features in CoMP
Doppler velocity and transverse oscillations in AIA images are made, together
with space-time analysis of propagating quasi-periodic intensity features seen
near the base of loops in AIA. Signatures of transverse motions are observed
along the same magnetic structure using CoMP Doppler velocity
(Vphase=600-750km/s, P=3-6mins) and in AIA/SDO above the limb (P=3-8mins).
Quasi-periodic intensity features (Vphase=100-200km/s, P=6-11mins) also travel
along the base of the same structure. On the disk, signatures of both
transverse and longitudinal intensity features were observed by AIA; both show
similar properties to signatures found along structures anchored in the same
active region three days earlier above the limb. Correlated features are
recovered by space-time analysis of neighbouring tracks over perpendicular
distances of <2.6Mm.Comment: 14 pages, 14 figures, 1 tabl
Explanatory debugging: Supporting end-user debugging of machine-learned programs
Many machine-learning algorithms learn rules of behavior from individual end users, such as task-oriented desktop organizers and handwriting recognizers. These rules form a “program” that tells the computer what to do when future inputs arrive. Little research has explored how an end user can debug these programs when they make mistakes. We present our progress toward enabling end users to debug these learned programs via a Natural Programming methodology. We began with a formative study exploring how users reason about and correct a text-classification program. From the results, we derived and prototyped a concept based on “explanatory debugging”, then empirically evaluated it. Our results contribute methods for exposing a learned program's logic to end users and for eliciting user corrections to improve the program's predictions
Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing
We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 60000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed
Millimeter Wave Localization: Slow Light and Enhanced Absorption
We exploit millimeter wave technology to measure the reflection and
transmission response of random dielectric media. Our samples are easily
constructed from random stacks of identical, sub-wavelength quartz and Teflon
wafers. The measurement allows us to observe the characteristic transmission
resonances associated with localization. We show that these resonances give
rise to enhanced attenuation even though the attenuation of homogeneous quartz
and Teflon is quite low. We provide experimental evidence of disorder-induced
slow light and superluminal group velocities, which, in contrast to photonic
crystals, are not associated with any periodicity in the system. Furthermore,
we observe localization even though the sample is only about four times the
localization length, interpreting our data in terms of an effective cavity
model. An algorithm for the retrieval of the internal parameters of random
samples (localization length and average absorption rate) from the external
measurements of the reflection and transmission coefficients is presented and
applied to a particular random sample. The retrieved value of the absorption is
in agreement with the directly measured value within the accuracy of the
experiment.Comment: revised and expande
When Is Higher Neuroticism Protective Against Death? Findings From UK Biobank
We examined the association between neuroticism and mortality in a sample of 321,456 people from UK Biobank and explored the influence of self-rated health on this relationship. After adjustment for age and sex, a 1- SD increment in neuroticism was associated with a 6% increase in all-cause mortality (hazard ratio = 1.06, 95% confidence interval = [1.03, 1.09]). After adjustment for other covariates, and, in particular, self-rated health, higher neuroticism was associated with an 8% reduction in all-cause mortality (hazard ratio = 0.92, 95% confidence interval = [0.89, 0.95]), as well as with reductions in mortality from cancer, cardiovascular disease, and respiratory disease, but not external causes. Further analyses revealed that higher neuroticism was associated with lower mortality only in those people with fair or poor self-rated health, and that higher scores on a facet of neuroticism related to worry and vulnerability were associated with lower mortality. Research into associations between personality facets and mortality may elucidate mechanisms underlying neuroticism's covert protection against death
An Iterative Approach to Twisting and Diverging, Type N, Vacuum Einstein Equations: A (Third-Order) Resolution of Stephani's `Paradox'
In 1993, a proof was published, within ``Classical and Quantum Gravity,''
that there are no regular solutions to the {\it linearized} version of the
twisting, type-N, vacuum solutions of the Einstein field equations. While this
proof is certainly correct, we show that the conclusions drawn from that fact
were unwarranted, namely that this irregularity caused such solutions not to be
able to truly describe pure gravitational waves. In this article, we resolve
the paradox---since such first-order solutions must always have singular lines
in space for all sufficiently large values of ---by showing that if we
perturbatively iterate the solution up to the third order in small quantities,
there are acceptable regular solutions. That these solutions become flat before
they become non-twisting tells us something interesting concerning the general
behavior of solutions describing gravitational radiation from a bounded source.Comment: 11 pages, a plain TeX file, submitted to ``Classical and Quantum
Gravity'
Recommended from our members
Effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: Separation of directly-driven and storage/release systems
The effect on geomagnetic activity of solar wind speed, compared with that of the strength of the interplanetary magnetic field, differs with geomagnetic latitude. In this study we construct a new index based on monthly standard deviations in the H-component of the geomagnetic field for all geomagnetic latitudes. We demonstrate that for this index the response at auroral regions correlates best with interplanetary coupling functions which include the solar wind speed while mid- and low-latitude regions respond to variations in the interplanetary magnetic field strength. These results are used to isolate the responsible geomagnetic current systems
- …
