5,254 research outputs found
Analysis of a method for precisely relating a seafloor point to a distant point on land
A study of the environmental constraints and engineering aspects of the acoustic portion of a system for making geodetic ties between undersea reference points and others on land is described. Important areas in which to make such observations initially would be from the California mainland out to oceanic points seaward of the San Andreas fault, and across the Aleutian Trench. The overall approach would be to operate a GPS receiver in a relative positioning (interferometric) mode to provide the long range element of the baseline determination (10 to 1,000 km) and an array of precision sea floor acoustic transponders to link the locally moving sea surface GPS antenna location to a fixed sea floor point. Analyses of various environmental constrants (tides, waves, currents, sound velocity variations) lead to the conclusion that, if one uses a properly designed transponder having a remotely controllable precise retransmission time delay, and is careful with regard to methods for installing these on the sea floor, one should, in many ocean locations, be able to achieve sub-decimeter overall system accuracy. Achievements of cm accuracy or better will require additional understanding of time and space scales of variation of sound velocity structure in the ocean at relevant locations
Recommended from our members
Systems thinkers think About systems education under the April 2010 (volcanic ash) clouds of Austria
The fragmented nature of systems education with multiple traditions expressed in very different ways at different institutions with ultimate confusing effects on the community of learners (students, managers, policy makers, etc), led to a group of Systems Thinkers to discuss and create generic curricula for education and learning about systems for the generalist and specialist tracks. An active network of systems educators and stakeholders who can benefit from enhanced systems education in having to deal with complex issues, was also explored. In this presentation some guidelines for designing introductory and advanced courses will be discussed. The Introduction to Systemic Thinking and Practice course is intended as an introductory course for students from all disciplines. The Advanced Systemic Thinking and Practice course is intended as a more advanced course for students who are faced with complex issues that require a trans-disciplinary and integrated approach. The designs contain a set of key systems concepts and frameworks relevant to the appropriate level, along with some indicative tools and methods which will enable students to explore the concepts. The value of a Global Network of Systems Educators will also be discussed and how this network could help to fulfil the needs of managers, policy makers and society in general. An example will be given of how the integration of this network with the UQ-UNESCO/MAB Global Learning Laboratories NET could lead to more people (decision-and policy makers in Governments, managers, businesses, etc.) having the ability to practice systems thinking – all of these contributing to Systems Thinking becoming a more mainstream part of a sustainable society
Polarized Neutron Laue Diffraction on a Crystal Containing Dynamically Polarized Proton Spins
We report on a polarized-neutron Laue diffraction experiment on a single
crystal of neodynium doped lanthanum magnesium nitrate hydrate containing
polarized proton spins. By using dynamic nuclear polarization to polarize the
proton spins, we demonstrate that the intensities of the Bragg peaks can be
enhanced or diminished significantly, whilst the incoherent background, due to
proton spin disorder, is reduced. It follows that the method offers unique
possibilities to tune continuously the contrast of the Bragg reflections and
thereby represents a new tool for increasing substantially the signal-to-noise
ratio in neutron diffraction patterns of hydrogenous matter.Comment: 5 pages, 3 figure
Field induced magnetic order in the frustrated magnet Gadolinium Gallium Garnet
Gd3Ga5O12, (GGG), has an extraordinary magnetic phase diagram, where no long
range order is found down to 25 mK despite \Theta_CW \approx 2 K. However, long
range order is induced by an applied field of around 1 T. Motivated by recent
theoretical developments and the experimental results for a closely related
hyperkagome system, we have performed neutron diffraction measurements on a
single crystal sample of GGG in an applied magnetic field. The measurements
reveal that the H-T phase diagram of GGG is much more complicated than
previously assumed. The application of an external field at low T results in an
intensity change for most of the magnetic peaks which can be divided into three
distinct sets: ferromagnetic, commensurate antiferromagnetic, and
incommensurate antiferromagnetic. The ferromagnetic peaks (e.g. (112), (440)
and (220)) have intensities that increase with the field and saturate at high
field. The antiferromagnetic reflections have intensities that grow in low
fields, reach a maximum at an intermediate field (apart from the (002) peak
which shows two local maxima) and then decrease and disappear above 2 T. These
AFM peaks appear, disappear and reach maxima in different fields. We conclude
that the competition between magnetic interactions and alternative ground
states prevents GGG from ordering in zero field. It is, however, on the verge
of ordering and an applied magnetic field can be used to crystallise ordered
components. The range of ferromagnetic and antiferromagnetic propagation
vectors found reflects the complex frustration in GGG.Comment: 6 pages, 7 figures, HFM 2008 conference pape
Electron mobility in surface- and buried- channel flatband In<sub>0.53</sub>Ga<sub>0.47</sub>As MOSFETs with ALD Al<sub>2</sub>O<sub>3</sub> gate dielectric.
In this paper, we investigate the scaling potential of flatband III-V MOSFETs by comparing the mobility of surface and buried In<sub>0.53</sub>Ga<sub>0.47</sub>As channel devices employing an Atomic Layer Deposited (ALD) Al<sub>2</sub>O<sub>3</sub> gate dielectric and a delta-doped InGaAs/InAlAs/InP heterostructure.
Peak electron mobilities of 4300 cm<sup>2</sup>/V·s and 6600 cm<sup>2</sup>/V·s at a carrier density of 3×1012 cm<sup>-2</sup> for the surface and buried channel structures respectively were determined. In contrast to similarly scaled inversion-channel devices, we find that mobility in surface channel flatband structures does not drop rapidly with electron density, but rather high mobility is maintained up to carrier concentrations around 4x10<sup>12</sup> cm<sup>-2</sup> before slowly dropping to around 2000 cm<sup>2</sup>/V·s at 1x10M<sup>13</sup> cm<sup>-2</sup>. We believe these to be world leading metrics for this material system and an important development in informing the III-V MOSFET device architecture selection process for future low power, highly scaled CM
Nonequilibrium radiation measurements and modelling relevant to Titan entry
An update to a collisional-radiative model developed by Magin1 for Huygens Titan atmospheric entry is proposed. The model is designed to predict the nonequilibrium populations and the radiation emitted from cyanogen and nitrogen during the entry of the Huygens probe into the Titan atmosphere. Radiation during Titan entry is important at lower speeds (around 5 – 6 km/s) more so than other planetary entries due to the formation of cyanogen in the shock layer, which is a highly radiative species. The model has been tested against measurements obtained with the EAST shock tube of NASA Ames Research Centre.1,2 The motivation for the update is due to the large discrepancies shown in the postshock fall-off rates of the radiation when compared to the experimental EAST shock tube test results. Modifications were made to the reaction rates used to calculate the species concentrations in the flow field. The reaction that was deemed most influential for the radiation fall off rate was the dissociation of molecular nitrogen. The model with modified reaction rates showed significantly better agreement with the EAST data. This paper also includes experimental results for radiation and spectra for Titan entry. Experiments were performed on the University of Queensland's X2 expansion tube. Spectra were recorded at various positions behind the shock. This enabled the construction of radiation profiles for Titan entry, as well as wavelength plots to identify various radiating species, in this case, predominately CN violet. This paper includes radiation profiles to compare with experiments performed at NASA Ames. It is planned that further experiments will be performed to cover a larger pressure range than NASA Ames. Good qualitative agreement has so far been obtained between our data and NASA Ames, however, it should be noted at the time of printing, the experimental spectrum have not been calibrated absolutely
New and improved demonstrations, each illustrating a single scientific paper
Thesis (Ed.M.)--Boston Universit
Reflectivity Anisotropy Spectra of Cu- and Ag- (110) surfaces from {\it ab initio} theory
We are able to disentagle the effects of the intraband and interband parts of
the bulk dielectric function on the bare dielectric anisotropy of the surface.
We show how the position, sign and amplitude of the structures observed in such
spectra depend on the above quantities. The lineshape of all the calculated
structures agree very well with the ones observed experimentally for samples
treated by suitable surface cleaning. In particular, we reproduce the observed
single peak structure of Ag at high energy, found to represent a state of the
clean surface different from the one giving the originally observed double peak
structure. This results is not reproduced by the 'local field' model.Comment: 4 pages, 3 figures. submitted to Phys. Rev. Let
Deconvolving Instrumental and Intrinsic Broadening in Excited State X-ray Spectroscopies
Intrinsic and experimental mechanisms frequently lead to broadening of
spectral features in excited-state spectroscopies. For example, intrinsic
broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy
elements where the core-hole lifetime is very short. On the other hand,
nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are
more limited by instrumental resolution. Here, we demonstrate that the
Richardson-Lucy (RL) iterative algorithm provides a robust method for
deconvolving instrumental and intrinsic resolutions from typical XAS and XRS
data. For the K-edge XAS of Ag, we find nearly complete removal of ~9.3 eV FWHM
broadening from the combined effects of the short core-hole lifetime and
instrumental resolution. We are also able to remove nearly all instrumental
broadening in an XRS measurement of diamond, with the resulting improved
spectrum comparing favorably with prior soft x-ray XAS measurements. We present
a practical methodology for implementing the RL algorithm to these problems,
emphasizing the importance of testing for stability of the deconvolution
process against noise amplification, perturbations in the initial spectra, and
uncertainties in the core-hole lifetime.Comment: 35 pages, 13 figure
- …
