10 research outputs found
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
We present results from a search for gravitational-wave bursts in the data
collected by the LIGO and Virgo detectors between July 7, 2009 and October 20,
2010: data are analyzed when at least two of the three LIGO-Virgo detectors are
in coincident operation, with a total observation time of 207 days. The
analysis searches for transients of duration < 1 s over the frequency band
64-5000 Hz, without other assumptions on the signal waveform, polarization,
direction or occurrence time. All identified events are consistent with the
expected accidental background. We set frequentist upper limits on the rate of
gravitational-wave bursts by combining this search with the previous LIGO-Virgo
search on the data collected between November 2005 and October 2007. The upper
limit on the rate of strong gravitational-wave bursts at the Earth is 1.3
events per year at 90% confidence. We also present upper limits on source rate
density per year and Mpc^3 for sample populations of standard-candle sources.
As in the previous joint run, typical sensitivities of the search in terms of
the root-sum-squared strain amplitude for these waveforms lie in the range 5
10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs
entails the most sensitive all-sky search for generic gravitational-wave bursts
and synthesizes the results achieved by the initial generation of
interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see
also the public announcement at
http://www.ligo.org/science/Publication-S6BurstAllSky
Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown
This paper was published online on 6 June 2011 with an omission in the Collaboration author list. S. Dwyer has been
added as of 12 April 2012. The Collaboration author list is incorrect in the printed version of the journal
An upper limit on the stochastic gravitational-wave background of cosmological origin
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 times 10-6 at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz
SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1
We present the results of a search for gravitational-wave bursts associated
with 137 gamma-ray bursts (GRBs) that were detected by satellite-based
gamma-ray experiments during the fifth LIGO science run and first Virgo science
run. The data used in this analysis were collected from 2005 November 4 to 2007
October 1, and most of the GRB triggers were from the Swift satellite. The
search uses a coherent network analysis method that takes into account the
different locations and orientations of the interferometers at the three
LIGO-Virgo sites. We find no evidence for gravitational-wave burst signals
associated with this sample of GRBs. Using simulated short-duration (<1 s)
waveforms, we set upper limits on the amplitude of gravitational waves
associated with each GRB. We also place lower bounds on the distance to each
GRB under the assumption of a fixed energy emission in gravitational waves,
with typical limits of D ~ 15 Mpc (E_GW^iso / 0.01 M_o c^2)^1/2 for emission at
frequencies around 150 Hz, where the LIGO-Virgo detector network has best
sensitivity. We present astrophysical interpretations and implications of these
results, and prospects for corresponding searches during future LIGO-Virgo
runs.Comment: 16 pages, 3 figures. Updated references. To appear in ApJ
Search for gravitational waves from binary black hole inspiral, merger, and ringdown
We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1–99M⊙ and total masses of 25–100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0 Mpc−3 Myr−1 at 90% confidence
