498 research outputs found
Low-temperature chemistry using the R-matrix method
Techniques for producing cold and ultracold molecules are enabling the study
of chemical reactions and scattering at the quantum scattering limit, with only
a few partial waves contributing to the incident channel, leading to the
observation and even full control of state-to-state collisions in this regime.
A new R-matrix formalism is presented for tackling problems involving low- and
ultra-low energy collisions. This general formalism is particularly appropriate
for slow collisions occurring on potential energy surfaces with deep wells. The
many resonance states make such systems hard to treat theoretically but offer
the best prospects for novel physics: resonances are already being widely used
to control diatomic systems and should provide the route to steering ultracold
reactions. Our R-matrix-based formalism builds on the progress made in
variational calculations of molecular spectra by using these methods to provide
wavefunctions for the whole system at short internuclear distances, (a regime
known as the inner region). These wavefunctions are used to construct collision
energy-dependent R-matrices which can then be propagated to give cross sections
at each collision energy. The method is formulated for ultracold collision
systems with differing numbers of atoms.Comment: Presented at Faraday Discussion on the Theory of Chemical Reactions
Published in Faraday Discussion
Efficient calculation of integrals in mixed ramp-Gaussian basis sets
Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RampItUp.These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or very large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre
Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO)
Accurate knowledge of the rovibronic near-infrared and visible spectra of
vanadium monoxide (VO) is very important for studies of cool stellar and hot
planetary atmospheres. Here, the required ab initio dipole moment and
spin-orbit coupling curves for VO are produced. This data forms the basis of a
new VO line list considering 13 different electronic states and containing over
277 million transitions. Open shell transition, metal diatomics are challenging
species to model through ab initio quantum mechanics due to the large number of
low-lying electronic states, significant spin-orbit coupling and strong static
and dynamic electron correlation. Multi-reference configuration interaction
methodologies using orbitals from a complete active space self-consistent-field
(CASSCF) calculation are the standard technique for these systems. We use
different state-specific or minimal-state CASSCF orbitals for each electronic
state to maximise the calculation accuracy. The off-diagonal dipole moment
controls the intensity of electronic transitions. We test finite-field
off-diagonal dipole moments, but found that (1) the accuracy of the excitation
energies were not sufficient to allow accurate dipole moments to be evaluated
and (2) computer time requirements for perpendicular transitions were
prohibitive. The best off-diagonal dipole moments are calculated using
wavefunctions with different CASSCF orbitals.Comment: Molecular Physics, 201
Low temperature scattering with the R-matrix method: argon-argon scattering
Results for elastic atom-atom scattering are obtained as a first practical
application of RmatReact, a new code for generating high-accuracy scattering
observables from potential energy curves. RmatReact has been created in
response to new experimental methods which have paved the way for the routine
production of ultracold atoms and molecules, and hence the experimental study
of chemical reactions involving only a small number of partial waves. Elastic
scattering between argon atoms is studied here. There is an unresolved
discrepancy between different argon-argon potential energy curves which give
different numbers of vibrational bound states and different scattering lengths
for the argon-argon dimer. Depending on the number of bound states, the
scattering length is either large and positive or large and negative.
Scattering observables, specifically the scattering length, effective range,
and partial and total cross-sections, are computed at low collision energies
and compared to previous results. In general, good agreement is obtained,
although our full scattering treatment yields resonances which are slightly
lower in energy and narrower than previous determinations using the same
potential energy curve.Comment: 26 pages, 9 figures, 3 table
ExoMol line lists XVIII. The high temperature spectrum of VO
An accurate line list, VOMYT, of spectroscopic transitions is presented for
hot VO. The 13 lowest electronic states are considered. Curves and couplings
are based on initial {\it ab initio} electronic structure calculations and then
tuned using available experimental data. Dipole moment curves, used to obtain
transition intensities, are computed using high levels of theory (e.g.
MRCI/aug-cc-pVQZ using state-specific or minimal-state CAS for dipole moments).
This line list contains over 277 million transitions between almost 640,000
energy levels. It covers the wavelengths longer than 0.29 m and includes
all transitions from energy levels within the lowest nine electronic states
which have energies less than 20,000 \cm{} to upper states within the lowest 13
electronic states which have energies below 50,000 \cm{}. The line lists give
significantly increased absorption at infrared wavelengths compared to
currently available VO line lists. The full line lists is made available in
electronic form via the CDS database and at www.exomol.com.Comment: MNRAS in pres
The {\it ab initio} calculation of spectra of open shell diatomic molecules
The spectra (rotational, rotation-vibrational or electronic) of diatomic
molecules due to transitions involving only closed-shell ()
electronic states follow very regular, simple patterns and their theoretical
analysis is usually straightforward. On the other hand, open-shell electronic
states lead to more complicated spectral patterns and, moreover, often appear
as a manifold of closely lying electronic states, leading to perturbations with
even larger complexity. This is especially true when at least one of the atoms
is a transition metal. Traditionally these complex cases have been analysed
using approaches based on perturbation theory, with semi-empirical parameters
determined by fitting to spectral data.
Recently the needs of two rather diverse scientific areas have driven the
demand for improved theoretical models of open-shell diatomic systems based on
an \emph{ab initio} approach, these areas are ultracold chemistry and the
astrophysics of "cool" stars, brown dwarfs and most recently extrasolar
planets. However, the complex electronic structure of these molecules combined
with the accuracy requirements of high-resolution spectroscopy render such an
approach particularly challenging. This review describes recent progress in
developing methods for directly solving the effective Schr\"odinger equation
for open-shell diatomic molecules, with a focus on molecules containing a
transtion metal. It considers four aspects of the problem: 1. The electronic
structure problem, 2. Non-perturbative treatments of the curve couplings, 3.
The solution of the nuclear motion Schr\"odinger equation, 4. The generation of
accurate electric dipole transition intensities. Examples of applications are
used to illustrate these issues.Comment: Topical Revie
Low-temperature chemistry using the R-matrix method
Techniques for producing cold and ultracold molecules are enabling the study of chemical reactions and scattering at the quantum scattering limit, with only a few partial waves contributing to the incident channel, leading to the observation and even full control of state-to-state collisions in this regime. A new R-matrix formalism is presented for tackling problems involving low- and ultra-low energy collisions. This general formalism is particularly appropriate for slow collisions occurring on potential energy surfaces with deep wells. The many resonance states make such systems hard to treat theoretically but offer the best prospects for novel physics: resonances are already being widely used to control diatomic systems and should provide the route to steering ultracold reactions. Our R-matrix-based formalism builds on the progress made in variational calculations of molecular spectra by using these methods to provide wavefunctions for the whole system at short internuclear distances, (a regime known as the inner region). These wavefunctions are used to construct collision energy-dependent R-matrices which can then be propagated to give cross sections at each collision energy. The method is formulated for ultracold collision systems with differing numbers of atoms
Getting Past the Language Gap: Innovations in Machine Translation
In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT
Conceptual evidence collection and analysis methodology for Android devices
Android devices continue to grow in popularity and capability meaning the
need for a forensically sound evidence collection methodology for these devices
also increases. This chapter proposes a methodology for evidence collection and
analysis for Android devices that is, as far as practical, device agnostic.
Android devices may contain a significant amount of evidential data that could
be essential to a forensic practitioner in their investigations. However, the
retrieval of this data requires that the practitioner understand and utilize
techniques to analyze information collected from the device. The major
contribution of this research is an in-depth evidence collection and analysis
methodology for forensic practitioners.Comment: in Cloud Security Ecosystem (Syngress, an Imprint of Elsevier), 201
Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy
This journal is © the Owner Societies. Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion, qualitatively differently behavior is found compared to traditional properties of the density matrix and hence entanglement provides new information about system properties. For chemical reactions, this type of entanglement simply builds up as the transition-state region is crossed. It is robust to small changes in parameter values and is therefore more attractive for making quantum qubits than is the related fragile ground-state entanglement, provided that coherent motion at the transition state can be sustained
- …
