1,017 research outputs found

    The ICRC: An Alibi for Swiss Neutrality?

    Get PDF

    Fourteen Years of Education and Public Outreach for the Swift Gamma-ray Burst Explorer Mission

    Full text link
    The Sonoma State University (SSU) Education and Public Outreach (E/PO) group leads the Swift Education and Public Outreach program. For Swift, we have previously implemented broad efforts that have contributed to NASA's Science Mission Directorate E/PO portfolio across many outcome areas. Our current focus is on highly-leveraged and demonstrably successful activities, including the wide-reaching Astrophysics Educator Ambassador program, and our popular websites: Epo's Chronicles and the Gamma-ray Burst (GRB) Skymap. We also make major contributions working collaboratively through the Astrophysics Science Education and Public Outreach Forum (SEPOF) on activities such as the on-line educator professional development course NASA's Multiwavelength Universe. Past activities have included the development of many successful education units including the GEMS Invisible Universe guide, the Gamma-ray Burst Educator's guide, and the Newton's Laws Poster set; informal activities including support for the International Year of Astronomy, the development of a toolkit about supernovae for the amateur astronomers in the Night Sky Network, and the Swift paper instrument and glider models.Comment: 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 42 in eConf Proceedings C130414

    Using the Big Ideas in Cosmology to Teach College Students

    Full text link
    Recent advances in our understanding of the Universe have revolutionized our view of its structure, composition and evolution. However, these new ideas have not necessarily been used to improve the teaching of introductory astronomy students. In this project, we have conducted research into student understanding of cosmological ideas so as to develop effective web-based tools to teach basic concepts important to modern cosmology. The tools are intended for use at the introductory college level. Our research uses several instruments, including open-ended and multiple choice surveys conducted at multiple institutions, as well as interviews and course artifacts at one institution, to ascertain what students know regarding modern cosmological ideas, what common misunderstandings and misconceptions they entertain, and what sorts of materials can most effectively overcome student difficulties in learning this material. These data are being used to create a suite of interactive, web-based tutorials that address the major ideas in cosmology using real data. Having students engage with real data is a powerful means to help students overcome certain misconceptions. Students master the scientific concepts and reasoning processes that lead to our current understanding of the universe through interactive tasks, prediction and reflection, experimentation, and model building.Comment: 2012 Fermi Symposium proceedings - eConf C12102

    Ammonia toxicity to the brain

    Get PDF
    Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approache

    A Direct Detection of Gas Accretion: The Lyman Limit System in 3C 232

    Full text link
    The gas added and removed from galaxies over cosmic time greatly affects their stellar populations and star formation rates. QSO absorption studies in close QSO/galaxy pairs create a unique opportunity to study the physical conditions and kinematics of this gas. Here we present new Hubble Space Telescope (HST) images of the QSO/galaxy pair 3C 232/NGC 3067. The quasar spectrum contains a Lyman-limit absorption system (LLS) due to NGC 3067 at cz = 1421 km/s that is associated with the nearby SAB galaxy NGC 3067. Previous work identifies this absorber as a high-velocity cloud (HVC) in NGC 3067 but the kinematics of the absorbing gas, infalling or outflowing, were uncertain. The HST images presented here establish the orientation of NGC 3067 and so establish that the LLS/HVC is infalling. Using this system as a prototype, we extend these results to higher-z Mg II/LLS to suggest that Mg II/LLSs are a sight line sampling of the so-called "cold mode accretion" (CMA) infalling onto luminous galaxies. But to match the observed Mg II absorber statistics, the CMA must be more highly ionized at higher redshifts. The key observations needed to further the study of low-z LLSs is HST/UV spectroscopy, for which a new instrument, the Cosmic Origins Spectrograph, has just been installed greatly enhancing our observational capabilities.Comment: 9 pages, 5 figures, accepted by PAS

    Going … Going … Public? Taking a United States Professional Sports League Public

    Full text link
    The four major American professional sports leagues—the MLB, NBA, NHL, and NFL—are wildly popular, but the leagues fail to capitalize fully on their success because they are organized in a largely inefficient manner. By organizing as unincorporated non-profits, leagues forgo their ability to raise capital via investors, forcing taxpayers to bear the burden of league investments such as new stadium construction. Further, the current organizational model creates a collective action problem, as self-interested team owners focus their support on actions that benefit their own franchise and leave ineffective commissioners in power. A solution to these problems is for a professional sports league to incorporate and organize as a publicly traded company. The application of the corporate model to the sports world is not a new concept—several individual franchises have “gone public” over the years. But, because of concerns arising from the fiduciary duties of care and loyalty, the corporate model is much more viable for an entire league rather than an individual team

    The Local Lyman-Alpha Forest: Absorbers in Galaxy Voids

    Full text link
    We have conducted pointed redshift surveys for galaxies in the direction of bright AGN whose HST far-UV spectra contain nearby (cz <~ 30,000 kms), low column density (12.5 <= log N_{HI} (cm s^{-2}) <= 14.5) Ly-alpha forest absorption systems. Here we present results for four lines-of-sight which contain nearby (cz <~ 3000 kms) Ly-alpha absorbers in galaxy voids. Although our data go quite deep (-13 <= M_{B}(limit) <= -14) out to impact parameters of 100-250 h_{70}^{-1} kpc, these absorbers remain isolated and thus appear to be truly intergalactic, rather than part of galaxies or their halos. Since we and others have discovered no galaxies in voids, the only baryons detected in the voids are in the Ly-alpha ``clouds''. Using a photoionization model for these clouds, the total baryonic content of the voids is 4.5% +/- 1.5% of the mean baryon density.Comment: 5 pages, 1 figure, accepted for publication in Astrophysical Journal Letter

    Dark halos acting as chaos controllers in asymmetric triaxial galaxy models

    Full text link
    We study the regular or chaotic character of orbits in a 3D dynamical model, describing a triaxial galaxy surrounded by a spherical dark halo component. Our numerical experiments suggest that the percentage of chaotic orbits decreases exponentially as the mass of the dark halo increases. A linear increase of the percentage of the chaotic orbits was observed as the scale length of the halo component increases. In order to distinguish between regular and chaotic motion, we chose to use the total angular momentum Ltot of the 3D orbits as a new indicator. Comparison with other, previously used, dynamical indicators, such as the Lyapunov Characteristic Exponent or the P(f) spectral method, shows that the Ltot indicator gives very fast and reliable results for characterizing the nature of orbits in galactic dynamical models.Comment: Published in Research in Astronomy and Astrophysics (RAA) journa
    corecore