17,269 research outputs found

    Dielectric friction and polar molecule rotational relaxation

    Get PDF
    Using the Onsager cavity model the frequency dependent torque due to the long range dipole-dipole interaction is derived for an electric dipole rotating in a polar liquid. This generalizes to all orders the result first order in the angular velocity derived by Fatuzzo and Mason and by Nee and Zwanzig. For a constant angular velocity the dielectric frictional torque on a rotor is shown to depend upon the complex permittivity only at the frequency of rotation and has no zero frequency contribution as given by the first order theory. The effect of dielectric friction upon the rotational Einstein relation and the second fluctuation-dissipation theorem is derived. Unlike the first order theory and consistent with the suggestion of Hubbard and Wolynes this theory invalidates the rotational Einstein relation when long range dipolar coupling effects are included in the theory of rotational relaxation. The first order theory is valid only for high angular frequencies above (2kT/I) . The formulation presented in this report is most conveniently applicable when significant inertial effects are present. In a sample calculation for highly compressed polar gases it is shown that dielectric friction produces a contribution to the angular momentum relaxation time second order in the gas density. This contribution is significant for rapidly rotating polar molecules of small moment of inertia at number densities above 2 × 10 cm

    HST imaging of hyperluminous infrared galaxies

    Full text link
    We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have morphologies showing evidence for interactions, six are QSOs. Host galaxies in the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88 and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no clear correlation between the IR power source and the optical morphology. None of the sources in the sample, including F15307+3252, show any evidence for gravitational lensing. We infer that the IR luminosities are thus real. Based on these results, and previous studies of HLIRGs, we conclude that this class of object is broadly consistent with being a simple extrapolation of the ULIRG population to higher luminosities; ULIRGs being mainly violently interacting systems powered by starbursts and/or AGN. Only a small number of sources whose infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous objects which have been boosted by gravitational lensing.Comment: 16 Pages. Accepted for publication in MNRA

    Radio Observations of Infrared Luminous High Redshift QSOs

    Get PDF
    We present Very Large Array (VLA) observations at 1.4 GHz and 5 GHz of a sample of 12 Quasi-stellar Objects (QSOs) at z = 3.99 to 4.46. The sources were selected as the brightest sources at 250 GHz from the recent survey of Omont et al. (2001). We detect seven sources at 1.4 GHz with flux densities, S_{1.4} > 50 microJy. These centimeter (cm) wavelength observations imply that the millimeter (mm) emission is most likely thermal dust emission. The radio-through-optical spectral energy distributions for these sources are within the broad range defined by lower redshift, lower optical luminosity QSOs. For two sources the radio continuum luminosities and morphologies indicate steep spectrum, radio loud emission from a jet-driven radio source. For the remaining 10 sources the 1.4 GHz flux densities, or limits, are consistent with those expected for active star forming galaxies. If the radio emission is powered by star formation in these systems, then the implied star formation rates are of order 1e3 M_solar/year. We discuss the angular sizes and spatial distributions of the radio emitting regions, and we consider briefly these results in the context of co-eval black hole and stellar bulge formation in galaxies.Comment: to appear in the A

    Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS)

    Full text link
    The Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE) provide information about the surface composition of about 100,000 minor planets. The resulting visible colors and albedos enabled us to group them in several major classes, which are a simplified view of the diversity shown by the few existing spectra. We performed a serendipitous search in VISTA-VHS observations using a pipeline developed to retrieve and process the data that corresponds to solar system objects (SSo). The colors and the magnitudes of the minor planets observed by the VISTA survey are compiled into three catalogs that are available online: the detections catalog (MOVIS-D), the magnitudes catalog (MOVIS-M), and the colors catalog (MOVIS-C). They were built using the third data release of the survey (VISTA VHS-DR3). A total of 39,947 objects were detected, including 52 NEAs, 325 Mars Crossers, 515 Hungaria asteroids, 38,428 main-belt asteroids, 146 Cybele asteroids, 147 Hilda asteroids, 270 Trojans, 13 comets, 12 Kuiper Belt objects and Neptune with its four satellites. The colors found for asteroids with known spectral properties reveal well-defined patterns corresponding to different mineralogies. The distributions of MOVIS-C data in color-color plots shows clusters identified with different taxonomic types. All the diagrams that use (Y-J) color separate the spectral classes more effectively than the (J-H) and (H-Ks) plots used until now: even for large color errors (<0.1), the plots (Y-J) vs (Y-Ks) and (Y-J) vs (J-Ks) provide the separation between S-complex and C-complex. The end members A, D, R, and V-types occupy well-defined regions.Comment: 19 pages, 16 figure

    350 Micron Dust Emission from High Redshift Objects

    Get PDF
    We report observations of a sample of high redshift sources (1.8<z<4.7), mainly radio-quiet quasars, at 350 microns using the SHARC bolometer camera at the Caltech Submillimeter Observatory. Nine sources were detected (>4-sigma) and upper limits were obtained for 11 with 350 micron flux density limits (3-sigma) in the range 30-125mJy. Combining published results at other far-infrared and millimeter wavelengths with the present data, we are able to estimate the temperature of the dust, finding relatively low values, averaging 50K. From the spectral energy distribution, we derive dust masses of a few 10^8 M_sun and luminosities of 4-33x10^{12} L_sun (uncorrected for any magnification) implying substantial star formation activity. Thus both the temperature and dust masses are not very different from those of local ultraluminous infrared galaxies. For this redshift range, the 350 micron observations trace the 60-100 micron rest frame emission and are thus directly comparable with IRAS studies of low redshift galaxies.Comment: 5 pages, 2 PS figures. Accepted for publication in Astrophysical Journal Letter

    Orbital Symmetries of Charge Density Wave Order in YBa2Cu3O6+x

    Get PDF
    Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional dd-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa2_2Cu3_3O6+x_{6+x} (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the $(0\ 0.31\ L)CDWpeakmeasuredattheCu CDW peak measured at the Cu Ledgeisdominatedbyan edge is dominated by an sformfactorratherthana form factor rather than a dformfactoraswasreportedpreviously.Inaddition,bymeasuringboth form factor as was reported previously. In addition, by measuring both (0.31\ 0\ L)and and (0\ 0.31\ L)peaks,weidentifyapronounceddifferenceintheorbitalsymmetryoftheCDWorderalongthe peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the aand and baxes,withtheCDWalongthe axes, with the CDW along the a$ axis exhibiting orbital order in addition to charge order.Comment: 17 pages, 4 figures + supplementary informatio

    Sensitive Radio Observations of High Redshift Dusty QSOs

    Get PDF
    We present sensitive radio continuum imaging at 1.4 GHz and 4.9 GHz of seven high redshift QSOs selected for having a 240 GHz continuum detection, which is thought to be thermal dust emission. We detect radio continuum emission from four of the sources: BRI 0952-0115, BR 1202-0725, LBQS 1230+1627B, and BRI 1335-0417. The radio source in BR 1202-0725 is resolved into two components, coincident with the double mm and CO sources. We compare the results at 1.4 GHz and 240 GHz to empirical and semi-analytic spectral models based on star forming galaxies at low redshift. The radio-to-submm spectral energy distribution for BR 1202-0725, LBQS 1230+1627B, and BRI 1335-0417 are consistent with that expected for a massive starburst galaxy, with implied massive star formation rates of order 1000 solar masses per year (without correcting for possible amplification by gravitational lensing). The radio-to-submm spectral energy distribution for BRI 0952-0115 suggests a low-luminosity radio jet source driven by the AGN.Comment: 12 pages, Latex emulateapj format, including 1 table and 3 figures. The Astrophysical Journal, to appear in the January 2000 issu
    corecore