1,124 research outputs found
Decreased oocyte DAZL expression in mice results in increased litter size by modulating follicle-stimulating hormone-induced follicular growth
While the germ cell-specific RNA binding protein, DAZL, is essential for oocytes to survive meiotic arrest, DAZL heterozygous (het) mice have an increased ovulation rate that is associated with elevated inhibin B and decreased plasma follicle-stimulating hormone (FSH). The relationship between decreased oocyte DAZL expression and enhanced follicular development in het mice was investigated using in vitro follicle cultures and in vivo modulation of endogenous FSH, by treating mice with inhibin and exogenous FSH. In vitro, follicles from het mice are more sensitive to FSH than those of wild-type (wt) mice and can grow in FSH concentrations that are deleterious to wild-type follicles. In vivo, despite no differences between genotypes in follicle population profiles, analysis of granulosa cell areas in antral follicles identified a significantly greater number of antral follicles with increased granulosa cell area in het ovaries. Modulation of FSH in vivo, using decreasing doses of FSH or ovine follicular fluid as a source of inhibin, confirmed the increased responsiveness of het antral follicles to FSH. Significantly more follicles expressing aromatase protein confirmed the earlier maturation of granulosa cells in het mice. In conclusion, it is suggested that DAZL expression represses specific unknown genes that regulate the response of granulosa cells to FSH. If this repression is reduced, as in DAZL het mice, then follicles can grow to the late follicular stage despite declining levels of circulating FSH, thus leading to more follicles ovulating and increased litter size
Novel expression of Haemonchus contortus vaccine candidate aminopeptidase H11 using the free-living nematode Caenorhabditis elegans
With the problem of parasitic nematode drug resistance increasing, vaccine development offers an alternative sustainable control approach. For some parasitic nematodes, native extracts enriched for specific proteins are highly protective. However, recombinant forms of these proteins have failed to replicate this protection. This is thought to be due to differences in glycosylation and/or conformation between native and recombinant proteins. We have exploited the free-living nematode Caenorhabditis elegans to examine its suitability as an alternative system for recombinant expression of parasitic nematode vaccine candidates. We focussed on Haemonchus contortus aminopeptidase H11 glycoprotein, which is enriched in a gut membrane fraction capable of inducing significant protection against this important ovine gastrointestinal nematode. We show that H. contortus H11 expressed in C. elegans is enzymatically active and MALDI mass spectrometry identifies similar di- and tri-fucosylated structures to those on native H11, with fucose at the 3- and/or 6-positions of the proximal GlcNAc. Some glycan structural differences were observed, such as lack of LDNF. Serum antibody to native H11 binds to C. elegans recombinant H11 and most of the antibody to rH11 or native H11 is directed to glycan moieties. Despite these similarities, no reduction in worm burden or faecal egg count was observed following immunisation of sheep with C. elegans-expressed recombinant H11 protein. The findings suggest that the di- and tri-fucosylated N-glycans expressed on rH11 do not contribute to the protective effect of H11 and that additional components present in native H11-enriched extract are likely required for enhancing the antibody response necessary for protection
ShopSmart 4 Health - protocol of a skills-based randomised controlled trial promoting fruit and vegetable consumption among socioeconomically disadvantaged women
BackgroundThere is a need for evidence on the most effective and cost-effective approaches for promoting healthy eating among groups that do not meet dietary recommendations for good health, such as those with low incomes or experiencing socioeconomic disadvantage. This paper describes the ShopSmart 4 Health study, a randomised controlled trial conducted by Deakin University, Coles Supermarkets and the Heart Foundation, to investigate the effectiveness and cost-effectiveness of a skill-building intervention for promoting increased purchasing and consumption of fruits and vegetables amongst women of low socioeconomic position (SEP).Methods/designShopSmart 4 Health employed a randomised controlled trial design. Women aged 18–60 years, holding a Coles store loyalty card, who shopped at Coles stores within socioeconomically disadvantaged neighbourhoods and met low-income eligibility criteria were invited to participate. Consenting women completed a baseline survey assessing food shopping and eating habits and food-related behaviours and attitudes. On receipt of their completed survey, women were randomised to either a skill-building intervention or a wait-list control condition. Intervention effects will be evaluated via self-completion surveys and using supermarket transaction sales data, collected at pre- and post-intervention and 6-month follow-up. An economic evaluation from a societal perspective using a cost-consequences approach will compare the costs and outcomes between intervention and control groups. Process evaluation will be undertaken to identify perceived value and effects of intervention components.DiscussionThis study will provide data to address the currently limited evidence base regarding the effectiveness and cost-effectiveness of skill-building intervention strategies aimed at increasing fruit and vegetable consumption among socioeconomically disadvantaged women, a target group at high risk of poor diets.<br /
Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis
Seasonal mammalsintegrate changes in the duration of nocturnal melatonin secretion to drive annual physiologic cycles. Melatonin receptors within the proximal pituitary region, the pars tuberalis (PT), are essential in regulating seasonal neuroendocrine responses. In the ovine PT, melatonin is known to influence acute changes in transcriptional dynamics coupled to the onset (dusk) and offset (dawn) of melatonin secretion, leading to a potential interval-timing mechanism capable of decoding changes in day length (photoperiod). Melatonin offset at dawn is linked to cAMP accumulation, which directly induces transcription of the clock gene Per1. The rise of melatonin at dusk induces a separate and distinct cohort, including the clock-regulated genes Cry1 and Nampt, but little is known of the upstream mechanisms involved. Here, we used next-generation sequencing of the ovine PT transcriptome at melatonin onset and identified Npas4 as a rapidly induced basic helix-loop-helix Per-Arnt-Sim domain transcription factor. In vivo we show nuclear localization of NPAS4 protein in presumptive melatonin target cells of the PT (α-glycoprotein hormone-expressing cells), whereas in situ hybridization studies identified acute and transient expression in the PT of Npas4 in response to melatonin. In vitro, NPAS4 forms functional dimers with basic helix loop helix-PAS domain cofactors aryl hydrocarbon receptor nuclear translocator (ARNT), ARNT2, and ARNTL, transactivating both Cry1 and Nampt ovine promoter reporters. Using a combination of 5'-deletions and site-directed mutagenesis, we show NPAS4-ARNT transactivation to be codependent upon two conserved central midline elements within the Cry1 promoter. Our data thus reveal NPAS4 as a candidate immediate early-response gene in the ovine PT, driving molecular responses to melatonin
Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes.
Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice
Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes
Impaired hypoglycaemia awareness in type 1 diabetes:lessons from the lab
Hypoglycaemia remains the most common metabolic adverse effect of insulin and sulfonylurea therapy in diabetes. Repeated exposure to hypoglycaemia leads to a change in the symptom complex that characterises hypoglycaemia, culminating in a clinical phenomenon referred to as impaired awareness of hypoglycaemia (IAH). IAH effects approximately 20–25% of people with type 1 diabetes and increases the risk of severe hypoglycaemia. This review focuses on the mechanisms that are responsible for the much higher frequency of hypoglycaemia in people with diabetes compared with those without, and subsequently how repeated exposure to hypoglycaemia leads to the development of IAH. The mechanisms that result in IAH development are incompletely understood and likely to reflect changes in multiple aspects of the counterregulatory response to hypoglycaemia, from adaptations within glucose and non-glucose-sensing cells to changes in the integrative networks that govern glucose homeostasis. Finally, we propose that the general process that incorporates many of these changes and results in IAH following recurrent hypoglycaemia is a form of adaptive memory called ‘habituation’
- …
