5,654 research outputs found

    Evolution of self-maintaining cellular information processing networks

    Get PDF
    We examine the role of self-maintenance (collective autocatalysis) in the evolution of computational biochemical networks. In primitive proto-cells (lacking separate genetic machinery) self-maintenance is a necessary condition for the direct reproduction and inheritance of what we here term Cellular Information Processing Networks (CIPNs). Indeed, partially reproduced or defective CIPNs may generally lead to malfunctioning or premature death of affected cells. We explore the interaction of this self-maintenance property with the evolution and adaptation of CIPNs capable of distinct information processing abilities. We present an evolutionary simulation platform capable of evolving artificial CIPNs from a bottom-up perspective. This system is an agent-based multi-level selectional Artificial Chemistry (AC) which employs a term rewriting system called the Molecular Classifier System (MCS). The latter is derived from the Holland broadcast language formalism. Using this system, we successfully evolve an artificial CIPN to improve performance on a simple pre-specified information processing task whilst subject to the constraint of continuous self-maintenance. We also describe the evolution of self-maintaining, crosstalking and multitasking, CIPNs exhibiting a higher level of topological and functional complexity. This proof of concept aims at contributing to the understanding of the open-ended evolutionary growth of complexity in artificial systems

    Society-wide scenarios for effective integration of Paris-aligned climate mitigation and adaptation in national and regional policy

    Get PDF
    Climate science (IPCC 2018) and economics (Emmerling et al. 2019; Burke, Hsiang, and Miguel 2015) indicates that achieving far earlier and deeper mitigation than pledged to date is likely now critical to effective climate action – particularly to ensure limits to adaptation are not breached. However, clear and coherent comparisons of national and regional climate action have been lacking. Therefore, here we summarise a benchmarking method (McMullin et al. 2019) to establish a prudent, fair share of the remaining global CO2 budget for any Party to the Paris Agreement. Using Ireland as a case study, we analyse current policy ambition relative to this benchmarked national CO2 quota, demonstrate early emergence of CO2 debt, and show tacit mitigation policy reliance on future large scale carbon dioxide removal (CDR). Toward society-wide scenarios for effective climate action, we further examine the crucial roles of non-CO2 mitigation and safeguarding land carbon stocks

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    Studying complex adaptive systems using molecular classifier systems

    Get PDF
    Complex Adaptive Systems (CAS) are dynamical networks of interacting agents occurring in a variety of natural and artificial systems (e.g. cells, societies, stock markets). These complex systems have the ability to adapt, evolve and learn from experience. To study CAS, Holland proposed to employ agent-based systems in which Learning Classifier Systems (LCS) are used to determine the agents behavior and adaptivity. We argue that LCS are limited for the study of CAS: the rule-discovery mechanism is pre-specified and may limit the evolvability of CAS. Secondly, LCS distinguish a demarcation between messages and rules, however operations are reflexive in CAS, e.g. in a cell, an agent (a molecule) may both act as a message (substrate) and as a catalyst (rule). To address these issues, we proposed the Molecular Classifier Systems (MCS.b), a string-based artificial chemistry based on Holland’s Broadcast Language. In the MCS.b, no explicit fitness function is specified, moreover no distinction is made between messages and rules. In the context of the ESIGNET project, we employ the MCS.b to study a subclass of CAS : Cell Signaling Networks (CSNs) which are complex biochemical networks responsible for coordinating cellular activities. As CSNs occur in cells, these networks must replicate themselves prior to cell division. In this poster we present a series of experiments focusing on the self-replication ability of these CAS

    A molecular approach to complex adaptive systems

    Get PDF
    Complex Adaptive Systems (CAS) are dynamical networks of interacting agents which as a whole determine the behavior, adaptivity and cognitive ability of the system. CAS are ubiquitous and occur in a variety of natural and artificial systems (e.g., cells, societies, stock markets). To study CAS, Holland proposed to employ an agent-based system in which Learning Classifier Systems (LCS) were used to determine the agents behavior and adaptivity. We argue that LCS are limited for the study of CAS: the rule-discovery mechanism is pre-specified and may limit the evolvability of CAS. Secondly, LCS distinguish a demarcation between messages and rules, however operations are reflexive in CAS, e.g., in a cell, an agent (a molecule) may both act as a message (substrate) and as a catalyst (rule). To address these issues, we proposed the Molecular Classifier Systems (MCS.b), a string-based Artificial Chemistry based on Holland’s broadcast language. In the MCS.b, no explicit fitness function or rule discovery mechanism is specified, moreover no distinction is made between messages and rules. In the context of the ESIGNET project, we employ the MCS.b to study a subclass of CAS: Cell Signaling Networks (CSNs) which are complex biochemical networks responsible for coordinating cellular activities. As CSNs occur in cells, these networks must replicate themselves prior to cell division. In this paper we present a series of experiments focusing on the self-replication ability of these CAS. Results indicate counter intuitive outcomes as opposed to those inferred from the literature. This work highlights the current deficit of a theoretical framework for the study of Artificial Chemistries

    AN INTERDISCIPLINARY FRAMEWORK FOR THE ANALYSIS OF FOODBORNE DISEASE

    Get PDF
    Food Consumption/Nutrition/Food Safety,

    An approach to evolving cell signaling networks in silico

    Get PDF
    Cell Signaling Networks(CSN) are complex bio-chemical networks which, through evolution, have become highly efficient for governing critical control processes such as immunological responses, cell cycle control or homeostasis. From a computational point of view, modeling Artificial Cell Signaling Networks (ACSNs) in silico may provide new ways to design computer systems which may have specialized application areas. To investigate these new opportunities, we review the key issues of modeling ACSNs identified as follows. We first present an analogy between analog and molecular computation. We discuss the application of evolutionary techniques to evolve biochemical networks for computational purposes. The potential roles of crosstalk in CSNs are then examined. Finally we present how artificial CSNs can be used to build robust real-time control systems. The research we are currently involved in is part of the multi disciplinary EU funded project, ESIGNET, with the central question of the study of the computational properties of CSNs by evolving them using methods from evolutionary computation, and to re-apply this understanding in developing new ways to model and predict real CSNs. This also complements the present requirements of Computational Systems Biology by providing new insights in micro-biology research

    Review: AISHE Conference 2009

    Get PDF
    A review of the 2009 conference of the All Ireland Society for Higher Education, which took place at NUI Maynooth, on August 27-28, 2009. Includes extensive hyperlinkage to additional information sources

    The Evolution of complexity in self-maintaining cellular information processing networks

    Get PDF
    We examine the role of self-maintenance (collective autocatalysis) in the evolution of computational biochemical networks. In primitive proto-cells (lacking separate genetic machinery) self-maintenance is a necessary condition for the direct reproduction and inheritance of what we here term Cellular Information Processing Networks (CIPNs). Indeed, partially reproduced or defective CIPNs may generally lead to malfunctioning or premature death of affected cells. We explore the interaction of this self-maintenance property with the evolution and adaptation of CIPNs capable of distinct information processing abilities. We present an evolutionary simulation platform capable of evolving artificial CIPNs from a bottom-up perspective. This system is an agent-based multi-level selectional Artificial Chemistry (AC) which employs a term rewriting system called the Molecular Classifier System (MCS). The latter is derived from the Holland broadcast language formalism. Using this system, we successfully evolve an artificial CIPN to improve performance on a simple pre-specified information processing task whilst subject to the constraint of continuous self-maintenance. We also describe the evolution of self-maintaining, crosstalking and multitasking, CIPNs exhibiting a higher level of topological and functional complexity. This proof of concept aims at contributing to the understanding of the open-ended evolutionary growth of complexity in artificial systems
    corecore