84 research outputs found

    Computational and in vitro studies of blast-induced blood-brain barrier disruption

    Full text link
    There is growing concern that blast-exposed individuals are at risk of developing neurological disorders later in life. Therefore, it is important to understand the dynamic properties of blast forces on brain cells, including the endothelial cells that maintain the blood-brain barrier (BBB), which regulates the passage of nutrients into the brain and protects it from toxins in the blood. To better understand the effect of shock waves on the BBB we have investigated an {\em in vitro} model in which BBB endothelial cells are grown in transwell vessels and exposed in a shock tube, confirming that BBB integrity is directly related to shock wave intensity. It is difficult to directly measure the forces acting on these cells in the transwell container during the experiments, and so a computational tool has been developed and presented in this paper. Two-dimensional axisymmetric Euler equations with the Tammann equation of state were used to model the transwell materials, and a high-resolution finite volume method based on Riemann solvers and the Clawpack software was used to solve these equations in a mixed Eulerian/Lagrangian frame. Results indicated that the geometry of the transwell plays a significant role in the observed pressure time series in these experiments. We also found that pressures can fall below vapor pressure due to the interaction of reflecting and diffracting shock waves, suggesting that cavitation bubbles could be a damage mechanism. Computations that include a simulated hydrophone inserted in the transwell suggest that the instrument itself could significantly alter blast wave properties. These findings illustrate the need for further computational modeling studies aimed at understanding possible blast-induced BBB damage

    Phenylbutyric Acid Rescues Endoplasmic Reticulum Stress-Induced Suppression of APP Proteolysis and Prevents Apoptosis in Neuronal Cells

    Get PDF
    BACKGROUND: The familial and sporadic forms of Alzheimer's disease (AD) have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimer's disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in 'loss of function' of gamma-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit. METHODOLOGY/PRINCIPAL FINDINGS: The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay gamma-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR) signaling-a biochemical marker of ER stress. Co-treatment of the gamma-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated gamma-secretase mediated cleavage of APP by 8-10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic alpha/gamma-cleavage. CONCLUSIONS/SIGNIFICANCE: ER stress represses gamma-secretase mediated APP proteolysis, which replicates some of the proteolytic deficits associated with the FAD mutations. The small molecular chaperone PBA can reverse ER stress induced effects upon APP proteolysis, trafficking and cellular viability. Pharmaceutical agents, such as PBA, that stimulate alpha/gamma-cleavage of APP by modifying intracellular trafficking should be explored as AD therapeutics

    Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit

    Get PDF
    Background: Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. Methods: We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin. Results: In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. Conclusions: The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB

    Mobility ratio study for immiscible water-oil systems, A

    No full text
    Includes bibliographical references (pages 68-70)

    Graduate Preparation Programs in College Student Personnel

    Full text link

    Mobility Control Design for Miscible-Type Waterfloods Using Micellar Solutions

    Full text link
    Introduction Oil recovery in any flooding operation depends on unit displacementefficiency and on the reservoir volume affected by the displacing fluid. Miscible fluids are used to increase the unit displacement efficiency. A higherpercentage of reservoir pore volume can be contacted if there is adequatemobility control during flooding. With hydrocarbon displacement media such as dry gas, enriched gas, and LPGslug, viscosity determines the mobility control. Under secondary recoveryconditions, viscosity ratios generally are greater than one, and theunfavorable mobility condition leads to a poor conformance factor. Both oil and water are displaced in a miscible waterflood. The flowing oiland water establish the mobility requirement for the displacing system. As weshall discuss later, the total mobility can be determined from relativepermeability curves. With tertiary flooding, transient test results can behelpful in selecting representative relative permeability curves. As will alsobe described, laboratory flooding procedures can be used to measure totalmobility directly. In miscible waterflooding such as with the alcohol slug process, there canbe a loss of miscibility because of mixing. The lack of mobility control behindthe alcohol slug has not been studied extensively. A new recovery process isavailable that utilizes micellar solutions for miscible-type waterflooding. With this process, mobility control is possible over a wide range of reservoirvariables. The mobility control feature, along with effective unitdisplacement, insures a high over-all recovery of oil. Design criteria foradequate mobility control in the process are described in this paper. </jats:sec

    Keeping Your Institution Off the NCAA Sanctions List

    Full text link

    Real deal pricing

    No full text
    This project generates just under an estimated $180,000 from direct and indirect profits that would only take 9 months to pay off initial investments. Implementing this project will improve the price management process from the top down. An increase in efficiency and total time for updating will be observed immediately. As stated, Return on investment (ROI) would be attained in under a year, which gives Food4Less the ability to pass on savings to customers and leap into the 21*' Century modern technology for staff and customers to appreciate
    corecore