485 research outputs found

    Cold SO_2 molecules by Stark deceleration

    Get PDF
    We produce SO_2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO_2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages are necessary to bring SO_2 to a complete standstill, significantly more than in other experiments. We show that in such a decelerator possible loss due to coupling between the motional degrees of freedom must be considered. Experimental results are compared with 3D Monte-Carlo simulations and the quantum state selectivity of the Stark decelerator is demonstrated.Comment: 7 pages, 5 figure

    Electrostatic trapping of metastable NH molecules

    Get PDF
    We report on the Stark deceleration and electrostatic trapping of 14^{14}NH (a1Δa ^1\Delta) radicals. In the trap, the molecules are excited on the spin-forbidden A3Πa1ΔA ^3\Pi \leftarrow a ^1\Delta transition and detected via their subsequent fluorescence to the X3ΣX ^3\Sigma^- ground state. The 1/e trapping time is 1.4 ±\pm 0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a1Δ,v=0,J=2a ^1\Delta, v=0,J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step towards accumulation of these radicals in a magnetic trap.Comment: replaced with final version, added journal referenc

    Deceleration of a supersonic beam of SrF molecules to 120 m/s

    Get PDF
    We report on the deceleration of a beam of SrF molecules from 290 to 120~m/s. Following supersonic expansion, the molecules in the X2ΣX^2\Sigma (v=0v=0, N=1N=1) low-field seeking states are trapped by the moving potential wells of a traveling-wave Stark decelerator. With a deceleration strength of 9.6 km/s2^2 we have demonstrated the removal of 85 % of the initial kinetic energy in a 4 meter long modular decelerator. The absolute amount of kinetic energy removed is a factor 1.5 higher compared to previous Stark deceleration experiments. The demonstrated decelerator provides a novel tool for the creation of highly collimated and slow beams of heavy diatomic molecules, which serve as a good starting point for high-precision tests of fundamental physics

    Operation of a Stark decelerator with optimum acceptance

    Get PDF
    With a Stark decelerator, beams of neutral polar molecules can be accelerated, guided at a constant velocity, or decelerated. The effectiveness of this process is determined by the 6D volume in phase space from which molecules are accepted by the Stark decelerator. Couplings between the longitudinal and transverse motion of the molecules in the decelerator can reduce this acceptance. These couplings are nearly absent when the decelerator operates such that only every third electric field stage is used for deceleration, while extra transverse focusing is provided by the intermediate stages. For many applications, the acceptance of a Stark decelerator in this so-called s=3s=3 mode significantly exceeds that of a decelerator in the conventionally used (s=1s=1) mode. This has been experimentally verified by passing a beam of OH radicals through a 2.6 meter long Stark decelerator. The experiments are in quantitative agreement with the results of trajectory calculations, and can qualitatively be explained with a simple model for the 6D acceptance. These results imply that the 6D acceptance of a Stark decelerator in the s=3s=3 mode of operation approaches the optimum value, i.e. the value that is obtained when any couplings are neglected.Comment: 13 pages, 11 figure

    Loading Stark-decelerated molecules into electrostatic quadrupole traps

    Get PDF
    Beams of neutral polar molecules in a low-field seeking quantum state can be slowed down using a Stark decelerator, and can subsequently be loaded and confined in electrostatic quadrupole traps. The efficiency of the trap loading process is determined by the ability to couple the decelerated packet of molecules into the trap without loss of molecules and without heating. We discuss the inherent difficulties to obtain ideal trap loading, and describe and compare different trap loading strategies. A new "split-endcap" quadrupole trap design is presented that enables improved trap loading efficiencies. This is experimentally verified by comparing the trapping of OH radicals using the conventional and the new quadrupole trap designs

    Multistage Zeeman deceleration of atomic and molecular oxygen

    Get PDF
    Multistage Zeeman deceleration is a technique used to reduce the velocity of neutral molecules with a magnetic dipole moment. Here we present a Zeeman decelerator that consists of 100 solenoids and 100 magnetic hexapoles, that is based on a short prototype design presented recently [Phys. Rev. A 95, 043415 (2017)]. The decelerator features a modular design with excellent thermal and vacuum properties, and is robustly operated at a 10 Hz repetition rate. This multistage Zeeman decelerator is particularly optimized to produce molecular beams for applications in crossed beam molecular scattering experiments. We characterize the decelerator using beams of atomic and molecular oxygen. For atomic oxygen, the magnetic fields produced by the solenoids are used to tune the final longitudinal velocity in the 500 - 125 m/s range, while for molecular oxygen the velocity is tunable in the 350 - 150 m/s range. This corresponds to a maximum kinetic energy reduction of 95% and 80% for atomic and molecular oxygen, respectively.Comment: Latest version as accepted by Physical Review

    Nonadiabatic transitions in a Stark decelerator

    Full text link
    In a Stark decelerator, polar molecules are slowed down and focussed by an inhomogeneous electric field which switches between two configurations. For the decelerator to work, it is essential that the molecules follow the changing electric field adiabatically. When the decelerator switches from one configuration to the other, the electric field changes in magnitude and direction, and this can cause molecules to change state. In places where the field is weak, the rotation of the electric field vector during the switch may be too rapid for the molecules to maintain their orientation relative to the field. Molecules that are at these places when the field switches may be lost from the decelerator as they are transferred into states that are not focussed. We calculate the probability of nonadiabatic transitions as a function of position in the periodic decelerator structure and find that for the decelerated group of molecules the loss is typically small, while for the un-decelerated group of molecules the loss can be very high. This loss can be eliminated using a bias field to ensure that the electric field magnitude is always large enough. We demonstrate our findings by comparing the results of experiments and simulations for the Stark deceleration of LiH and CaF molecules. We present a simple method for calculating the transition probabilities which can easily be applied to other molecules of interest.Comment: 12 pages, 9 figures, minor revisions following referee suggestion

    Multiple packets of neutral molecules revolving for over a mile

    Get PDF
    The level of control that one has over neutral molecules in beams dictates their possible applications. Here we experimentally demonstrate that state-selected, neutral molecules can be kept together in a few mm long packet for a distance of over one mile. This is accomplished in a circular arrangement of 40 straight electrostatic hexapoles through which the molecules propagate over 1000 times. Up to 19 packets of molecules have simultaneously been stored in this ring structure. This brings the realization of a molecular low-energy collider within reach

    Optical pumping of trapped neutral molecules by blackbody radiation

    Get PDF
    Optical pumping by blackbody radiation is a feature shared by all polar molecules and fundamentally limits the time that these molecules can be kept in a single quantum state in a trap. To demonstrate and quantify this, we have monitored the optical pumping of electrostatically trapped OH and OD radicals by room-temperature blackbody radiation. Transfer of these molecules to rotationally excited states by blackbody radiation at 295 K limits the 1/e1/e trapping time for OH and OD in the X2Π3/2,v=0,J=3/2(f)X^{2}\Pi_{3/2},v''=0,J''=3/2(f) state to 2.8 s and 7.1 s, respectively.Comment: corrected small mistakes; added journal reference

    Direct measurement of the radiative lifetime of vibrationally excited OH radicals

    Get PDF
    Neutral molecules, isolated in the gas-phase, can be prepared in a long-lived excited state and stored in a trap. The long observation time afforded by the trap can then be exploited to measure the radiative lifetime of this state by monitoring the temporal decay of the population in the trap. This method is demonstrated here and used to benchmark the Einstein AA-coefficients in the Meinel system of OH. A pulsed beam of vibrationally excited OH radicals is Stark decelerated and loaded into an electrostatic quadrupole trap. The radiative lifetime of the upper Λ\Lambda-doublet component of the X2Π3/2,v=1,J=3/2X ^2\Pi_{3/2}, v=1, J=3/2 level is determined as 59.0±2.059.0 \pm 2.0 ms, in good agreement with the calculated value of 57.7±1.057.7 \pm 1.0 ms.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    corecore