253 research outputs found
VEGF with AMD3100 Endogenously Mobilizes Mesenchymal Stem Cells and Improves Fracture Healing
A significant number of fractures develop non‐union. Mesenchymal stem cell (MSC) therapy may be beneficial, however, this requires cell acquisition, culture and delivery. Endogenous mobilization of stem cells offers a non‐invasive alternative. The hypothesis was administration of VEGF and the CXCR4 antagonist AMD3100 would increase the circulating pool of available MSCs and improve fracture healing. Ex‐breeder female wistar rats received VEGF followed by AMD3100, or sham PBS. Blood prepared for culture and colonies were counted. P3 cells were analyzed by flow cytometry, bi‐differentiation. The effect of mobilization on fracture healing was evaluated with 1.5 mm femoral osteotomy stabilized with an external fixator in 12–14 week old female Wistars. The mobilized group had significantly greater number of cfus/ml compared to controls, p = 0.029. The isolated cells expressed 1.8% CD34, 35% CD45, 61% CD29, 78% CD90, and differentiated into osteoblasts but not into adipocytes. The fracture gap in animals treated with VEGF and AMD3100 showed increased bone volume; 5.22 ± 1.7 µm3 and trabecular thickness 0.05 ± 0.01 µm compared with control animals (4.3 ± 3.1 µm3, 0.04 ± 0.01 µm, respectively). Radiographic scores quantifying fracture healing (RUST) showed that the animals in the mobilization group had a higher healing score compared to controls (9.6 vs. 7.7). Histologically, mobilization resulted in significantly lower group variability in bone formation (p = 0.032) and greater amounts of bone and less fibrous tissue than the control group. Clinical significance: This pre‐clinical study demonstrates a beneficial effect of endogenous MSC mobilization on fracture healing, which may have translation potential to prevent or treat clinical fractures at risk of delayed or non‐union fractures
Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator
We demonstrate the coupling of rare-earth ions locally implanted in a
substrate (Gd in AlO) to a superconducting NbN
lumped-element micro-resonator. The hybrid device is fabricated by a controlled
ion implantation of rare-earth ions in well-defined micron-sized areas, aligned
to lithographically defined micro-resonators. The technique does not degrade
the internal quality factor of the resonators which remain above .
Using microwave absorption spectroscopy we observe electron-spin resonances in
good agreement with numerical modelling and extract corresponding coupling
rates of the order of MHz and spin linewidths of MHz.Comment: 4 pages, 2 Figure
The epidemiology of patellar luxation in dogs attending primary-care veterinary practices in England
BACKGROUND: Canine patellar luxation is one of the most common orthopaedic disorders of dogs and is a potential welfare concern because it can lead to lameness, osteoarthritis and pain. However, there are limited epidemiological data on the disorder relating to the general population of dogs in England. This study aimed to investigate the VetCompass Programme database of dogs attending primary-care veterinary practices in England to report on the prevalence, risk factors and clinical management of diagnosed patellar luxation cases. RESULTS: The study included all dogs with at least one electronic patient record in the VetCompass database from September 1(st), 2009 to August 31(st), 2014. Candidate patellar luxation cases were identified using free-text word searching of the clinical notes and VeNom diagnosis term fields. Univariable and multivariable binary logistic regression modelling was used for risk factor analysis. The overall dataset comprised 210,824 dogs attending 119 clinics in England. The prevalence of patellar luxation diagnosis in dogs was 1.30 % (95 % confidence interval (CI) 1.21-1.39). Of the 751 incident cases, 293 (39.0 %) received medical management, 99 (13.2 %) received surgical intervention and 28 (3.7 %) were referred for further management. Multivariable modelling documented 11 breeds with increased odds of patellar luxation compared with crossbred dogs, including the Pomeranian (odds ratio [OR]: 6.5, 95 % CI 4.0-10.7, P < 0.001), Chihuahua (OR: 5.9, 95 % CI 4.4-7.9, P < 0.001), Yorkshire Terrier (OR: 5.5, 95 % CI 4.3-7.1, P < 0.001) and French Bulldog (OR: 5.4, 95 % CI 3.1-9.3, P < 0.001). Dogs with bodyweight below their mean for breed and sex had a 1.4 times odds of diagnosis (95 % CI 1.2-1.6, P < 0.001). Dogs aged ≥ 12.0 years showed 0.4 times the odds (95 % CI 0.3-0.5, P < 0.001) compared with dogs aged < 3.0 years. Females had 1.3 times the odds (95 % CI 1.1-1.5, P < 0.001), neutered dogs had 2.4 times the odds (95 % CI 1.8-3.2, P < 0.001) and insured dogs had 1.9 times the odds (95 % CI 1.6-2.3, P < 0.001). CONCLUSIONS: Patellar luxation warrants inclusion as a welfare priority in dogs and control strategies that include this disorder should be considered as worthwhile breeding goals, especially in predisposed breeds
Key dating features for timber-framed dwellings in Surrey
This article is made available through the Brunel Open Access Publishing Fund. Copyright @ The Vernacular Architecture Group 2013. MORE OpenChoice articles are open access and distributed under the terms of the Creative Commons Attribution License 3.0.The main component of the Surrey Dendrochronology Project is the accurate dating of 177 ‘dwellings’, nearly all by tree-ring analysis. The dates are used to establish date ranges for 52 ‘key features’, which cover many aspects of timber-framing from building type to details of carpentry. It is shown that changes of method and fashion were in many cases surprisingly rapid, almost abrupt in historical terms. Previous dating criteria for timber-framed dwellings in the county have been refined and new criteria introduced. Clusters of change from the 1440s and the 1540s are shown and some possible historical links suggested.The Heritage Lottery Fund, the Domestic Buildings Research Group (Surrey), the Surrey Archaeological Society and the historical societies of Charlwood, Farnham and Nutfield
Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal
We report on an anomalous behavior of the spin-splitting zeros in the de
Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic
superconductor. The zeros as well as the angular dependence of the amplitude of
the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK)
prediction. In contrast, the angular dependence of the fundamental dHvA
amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal
follow the LK theory. We can explain this behavior by small chemical-potential
oscillations and find a very good agreement between theory and experiment. A
detailed wave-shape analysis of the dHvA signal corroborates the existence of
an oscillating chemical potential
Angle-Dependent Microresonator ESR Characterization of Locally Doped Gd3+:Al2O3
Interfacing rare-earth-doped crystals with superconducting circuit architectures provides an attractive platform for quantum memory and transducer devices. Here, we present the detailed characterization of such a hybrid system: a locally implanted rare-earth Gd3+ in Al2O3 spin system coupled to a superconducting microresonator. We investigate the properties of the implanted spin system through angular-dependent microresonator electron spin resonance (micro-ESR) spectroscopy. We find, despite the high-energy near-surface implantation, the resulting micro-ESR spectra to be in excellent agreement with the modeled Hamiltonian, supporting the integration of dopant ions into their relevant lattice sites while maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our microresonator, emphasizing the need for controllable local implantation
Human limbal mesenchymal stem cells express ABCB5 and can grow on amniotic membrane
Aim: To isolate and characterize limbal mesenchymal stem cells (LMSCs) from human corneoscleral rings. Materials & methods: Cells were isolated from corneoscleral rings and cultured in a mesenchymal stem cell (MSC)-selective media and examined for differentiation, phenotyping and characterization. Results: LMSCs were capable of trilineage differentiation, adhered to tissue culture plastic, expressed HLA class I and cell surface antigens associated with human MSC while having no/low expression of HLA class II and negative hematopoietic lineage markers. They were capable for CXCL12-mediated cellular migration. LMSCs adhered, proliferated on amniotic membrane and expressed the common putative limbal stem cell markers. Conclusion: Limbal-derived MSC exhibited plasticity, could maintain limbal markers expression and demonstrated viable growth on amniotic membrane
Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models
Empirical transfer functions are derived for predicting the total benthic nitrate loss(LNO3) and the net loss of dissolved inorganic nitrogen (LDIN) in marine sediments,equivalent to sedimentary denitrification. The functions are dynamic vertically integratedsediment models which require the rain rate of particulate organic carbon to the seafloor(RRPOC) and a proposed new variable(O2-NO3)bw (bottom water O2 concentration minus NO3-concentration) as the only input parameters. Applied globally to maps of RRPOC and(O2-NO3)bw on a 1° x 1° spatial resolution, the models predict a NO3- drawdown of 196 Tg yr-1 (LNO3)of which 153 – 155 Tg yr-1 is denitrified to N2 (LDIN). This is in good agreement with previous estimates using very different methods. Our approach implicitly accounts for fixed N loss via anammox, such that our findings do not support the idea that the relatively recent discovery of anammox in marine sediments might require current estimates of the global benthic marine N budget to be revised. The continental shelf (0 – 200 m) accounts for >50% of global LNO3 and LDIN, with slope (200 – 2000 m) and deep-sea (>2000 m) sediments contributing ca. 30% and 20%, respectively.
Denitrification in high-nitrate/low-oxygen regions such as oxygen minimum zones is significant (ca. 15 Tg N yr-1; 10% of global) despite covering only 1% of the seafloor. The data are used to estimate the net fluxes of nitrate (18 Tg N yr-1) and phosphate(27 Tg P yr-1) across the sediment-water interface. The benthic fluxes strongly deviate from Redfield composition, with globally averaged N:P, N:C and C:P values of 8.3, 0.067 and 122, respectively, indicating world-wide fixed N losses (by denitrification) relative to C and P. The transfer functions are designed to be coupled dynamically to general circulation models to better predict the feedback of sediments on pelagic nutrient cycling and dissolved O2 distributions
- …
