66 research outputs found
Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures
Defects in endolysosomal and autophagic functions are increasingly viewed as key pathological features of neurodegenerative disorders. A master regulator of these functions is phosphatidylinositol-3-phosphate (PI3P), a phospholipid synthesized primarily by class III PI 3-kinase Vps34. Here we report that disruption of neuronal Vps34 function in vitro and in vivo impairs autophagy, lysosomal degradation as well as lipid metabolism, causing endolysosomal membrane damage. PI3P deficiency also promotes secretion of unique exosomes enriched for undigested lysosomal substrates, including amyloid precursor protein C-terminal fragments (APP-CTFs), specific sphingolipids, and the phospholipid bis(monoacylglycero)phosphate (BMP), which normally resides in the internal vesicles of endolysosomes. Secretion of these exosomes requires neutral sphingomyelinase 2 and sphingolipid synthesis. Our results reveal a homeostatic response counteracting lysosomal dysfunction via secretion of atypical exosomes eliminating lysosomal waste and define exosomal APP-CTFs and BMP as candidate biomarkers for endolysosomal dysfunction associated with neurodegenerative disorders.Fan Wang for the kind gift of the Pi3kc3flox/flox mice. We thank Basant Abdulrahman and Hermann Schaetzl for providing the gene-edited Atg5 KO N2a cells. We are also grateful to Zhenyu Yue, Ralph Nixon, and Jean Gruenberg for the kind gift of anti-Atg14L, Cathepsin D, and BMP antibodies, respectively. We thank Thomas Südhof for sharing Cre recombinase lentiviruses. We thank the OCS Microscopy Core of New York University Langone Medical Center for the support of the EM work and Rocio Perez-Gonzalez and Efrat Levy of New York University for their support during optimization of the brain exosome isolation technique. We thank Elizabeta Micevska for the maintenance and genotyping of the animal colony and Bowen Zhou for the preliminary lipidomic analysis of conditional Pi3kc3 cKO mice. We also thank Rebecca Williams and Catherine Marquer for critically reading the manuscript. This work was supported by grants from the Fundação para a Ciência e Tecnologia (PD/BD/105915/2014 to A.M.M.); the National Institute of Health (R01 NS056049 to G.D.P., transferred to Ron Liem, Columbia University; T32-MH015174 to Rene Hen (Z.M.L.)). Z.M.L. and R.B.C. received pilot grants from ADRC grant P50 AG008702 to S.A.S.info:eu-repo/semantics/publishedVersio
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
An Exploratory Analysis of Child Feeding Beliefs and Behaviors Included in Food Blogs Written by Mothers of Preschool-Aged Children
Time Use During First Year of College Predicts Participation in High-Impact Activities During Later Years
A call for research exploring social media influences on mothers' child feeding practices and childhood obesity risk
- …
