25 research outputs found

    Expanding Models for Physics Teaching: A Framework for the Integration of Computational Modeling

    Get PDF
    &nbsp; Teaching computation in science courses can enhance science education, but doing so requires that teachers expand the vision of their discipline beyond the traditional view of science presented in most curricula. This article describes a design-based research (DBR) program that included collaboration among high school teachers and professional development leaders in physics and computer science education. Through three years of professional development and teacher-led development, field testing, and refinement of integrated curricular resources, we have combined instructional modeling practices, physical lab materials, and computer programming activities. One of the outcomes is a co-created framework for the integration of computational modeling into physics that is sensitive to teachers&rsquo; interests and expressed needs in addition to learning goals. This framework merges two evidence-based approaches to teaching: Bootstrap:Algebra, a web-based computing curriculum that emphasizes using multiple representations of functions and scaffolds that make the programming process explicit, and Modeling Instruction in physics, an approach that emphasizes the use of conceptual models, modeling practices and representational tools. In doing so, we uncover the need to balance teachers&rsquo; visions for integration opportunities with practical instructional needs and emphasize that frameworks for integration need to reflect teachers&rsquo; values and goals.</div

    The Unistellar Exoplanet Campaign: Citizen Science Results and Inherent Education Opportunities

    Get PDF
    This paper presents early results from and prospects for exoplanet science using a citizen science private/public partnership observer network managed by the SETI Institute in collaboration with Unistellar. The network launched in 2020 January and includes 163 citizen scientist observers across 21 countries. These observers can access a citizen science mentoring service developed by the SETI Institute and are also equipped with Unistellar Enhanced Vision Telescopes. Unistellar technology and the campaign's associated photometric reduction pipeline enable each telescope to readily obtain and communicate light curves to observers with signal-to-noise ratio suitable for publication in research journals. Citizen astronomers of the Unistellar Exoplanet (UE) Campaign routinely measure transit depths of ≳1% and contribute their results to the exoplanet research community. The match of the detection system, targets, and scientific and educational goals is robust. Results to date include 281 transit detections out of 651 processed observations. In addition to this campaign's capability to contribute to the professional field of exoplanet research, UE endeavors to drive improved science, technology, engineering, and mathematics education outcomes by engaging students and teachers as participants in science investigations, that is, learning science by doing science

    Helping Students Construct Robust Conceptual Models

    Full text link

    Inside Out: Action Research from the Teacher–Researcher Perspective

    Full text link

    Whiteboarding: A Tool for Moving Classroom Discourse from Answer-Making to Sense-Making

    Full text link

    Modeling Discourse in Secondary Science and Mathematics Classrooms

    No full text

    Modeling Discourse in Secondary Science and Mathematics Classrooms

    Full text link

    Building Competence in Science and Engineering

    No full text
    Next Generation Science Standards science and engineering practices (NGSS S&amp;E) are ways of eliciting reasoning and applying foundational ideas in science. Studies have revealed one major impediment to implementing the NGSS, namely, insufficient teacher preparation, which is a concern at all teaching levels. The present study examined a program grounded in research on how students learn science and engineering pedagogical content knowledge and strategies for incorporating NGSS S&amp;E practices into instruction. The program provided guided teaching practice, content learning experiences in the physical sciences, engineering design tasks, and extended projects. Research questions included: To what extent did the Program increase teachers’ competence and confidence in science content, with emphasis on science and engineering practices? To what extent did the program increase teachers’ use of reformed teaching practices? This mixed-methods, quasi-experimental design examined teacher outcomes in the program for 24 months. The professional development (PD) findings revealed significant increases in teachers’ competence and confidence in integrating science and engineering practices in the classroom. These findings and their specificity contribute to current knowledge and can be utilized by districts in selecting PD to support teachers in preparing to implement the NGSS successfully

    Building Competence in Science and Engineering

    No full text
    Next Generation Science Standards science and engineering practices (NGSS S&amp;E) are ways of eliciting reasoning and applying foundational ideas in science. Studies have revealed one major impediment to implementing the NGSS, namely, insufficient teacher preparation, which is a concern at all teaching levels. The present study examined a program grounded in research on how students learn science and engineering pedagogical content knowledge and strategies for incorporating NGSS S&amp;E practices into instruction. The program provided guided teaching practice, content learning experiences in the physical sciences, engineering design tasks, and extended projects. Research questions included: To what extent did the Program increase teachers’ competence and confidence in science content, with emphasis on science and engineering practices? To what extent did the program increase teachers’ use of reformed teaching practices? This mixed-methods, quasi-experimental design examined teacher outcomes in the program for 24 months. The professional development (PD) findings revealed significant increases in teachers’ competence and confidence in integrating science and engineering practices in the classroom. These findings and their specificity contribute to current knowledge and can be utilized by districts in selecting PD to support teachers in preparing to implement the NGSS successfully.</jats:p
    corecore