96 research outputs found

    Optoelectronic devices based on van der Waals heterostructures

    Get PDF
    In this thesis we investigate the use of van der Waals heterostructures in optoelec- tronic devices. An improvement in the optical and electronic performance of specific devices can be made by combining two or more atomically thin materials in layered structures. We demonstrate a heterostructure photodetector formed by combining graphene with tungsten disulphide. These photodetectors were found to be highly sensitive to light due to a gain mechanism that produced over a million electrons per photon. This arises from the favourable electrical properties of graphene and the strong light-matter interaction in WS2 . An analysis of the photodetector per- formance shows that these devices are capable of detecting light under moonlight illuminations levels at video-frame-rate speeds with applications in night vision ima- ging envisaged. We also report a novel method for the direct laser writing of a high-k dielectric embedded inside a van der Waals heterostructure. Such structures were shown to be capable of both light-detection and light-emission within the same de- vice architecture, paving the way for future multifunctional optoelectronic devices. Finally we address a more fundamental problem in the properties of aligned grap- hene/hBN heterostructures. Strain distributions are shown to modify the electronic properties of graphene due to a change in the interlayer interaction. We demon- strates a method to engineer these strain patterns by contact geometry design and thermal annealing strategies.Engineering and Physical Sciences Research Council (EPSRC

    Fast and Highly Sensitive Ionic-Polymer-Gated WS2 -Graphene Photodetectors

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.The combination of graphene with semiconductor materials in heterostructure photodetectors enables amplified detection of femtowatt light signals using micrometer-scale electronic devices. Presently, long-lived charge traps limit the speed of such detectors, and impractical strategies, e.g., the use of large gate-voltage pulses, have been employed to achieve bandwidths suitable for applications such as video-frame-rate imaging. Here, atomically thin graphene-WS2 heterostructure photodetectors encapsulated in an ionic polymer are reported, which are uniquely able to operate at bandwidths up to 1.5 kHz whilst maintaining internal gain as large as 10(6) . Highly mobile ions and the nanometer-scale Debye length of the ionic polymer are used to screen charge traps and tune the Fermi level of the graphene over an unprecedented range at the interface with WS2 . Responsivity R = 10(6) A W(-1) and detectivity D* = 3.8 × 10(11) Jones are observed, approaching that of single-photon counters. The combination of both high responsivity and fast response times makes these photodetectors suitable for video-frame-rate imaging applications.J.D.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1 ). S.F.R acknowledges financial support from the Higher Committee for Education Development in Iraq (HCED). S.R. and M.F.C. acknowledge financial support from EPSRC (Grant No. EP/J000396/1, EP/K017160/1, EP/K010050/1, EP/G036101/1, EP/M001024/1, and EP/M002438/1) and from Royal Society International Exchanges Scheme 2016/R1

    Sorption and diffusion of caesium in some nuclear graphites.

    Get PDF

    Accept or decline? A statistical approach to aid decision making

    Get PDF

    Graphene-based light sensing: fabrication, characterisation, physical properties and performance

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record.Graphene and graphene-based materials exhibit exceptional optical and electrical properties with great promise for novel applications in light detection. However, several challenges prevent the full exploitation of these properties in commercial devices. Such challenges include the limited linear dynamic range (LDR) of graphene-based photodetectors, the lack of efficient generation and extraction of photoexcited charges, the smearing of photoactive junctions due to hot-carriers effects, large-scale fabrication and ultimately the environmental stability of the constituent materials. In order to overcome the aforementioned limits, different approaches to tune the properties of graphene have been explored. A new class of graphene-based devices has emerged where chemical functionalisation, hybridisation with light-sensitising materials and the formation of heterostructures with other 2D materials have led to improved performance, stability or versatility. For example, intercalation of graphene with FeCl3 is highly stable in ambient conditions and can be used to define photo-active junctions characterized by an unprecedented LDR while graphene oxide (GO) is a very scalable and versatile material which supports the photodetection from UV to THz frequencies. Nanoparticles and quantum dots have been used to enhance the absorption of pristine graphene and to enable high gain thanks to the photogating effect. In the same way, hybrid detectors made from stacked sequences of graphene and layered transition-metal dichalcogenides enabled a class of detectors with high gain and responsivity. In this work we will review the performance and advances in functionalised graphene and hybrid photodetectors, with particular focus on the physical mechanisms governing the photoresponse in these materials, their performance and possible future paths of investigation.Funding: M.F.C. and S.R. acknowledge financial support from: Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, projects EP/M002438/1, EP/M001024/1, EPK017160/1, EP/K031538/1, EP/J000396/1; the Royal Society, grant title "Room temperature quantum technologies" and "Wearable graphene photovolotaic"; Newton fund, Uk-Brazil exchange grant title "Chronographene" and the Leverhulme Trust, research grants "Quantum drums" and "Quantum revolution". J.D.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials, Grant No. EP/L015331/1

    Highly Efficient Rubrene–Graphene Charge-Transfer Interfaces as Phototransistors in the Visible Regime

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge-transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra-broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, the long-range order in rubrene single crystals is utilized to engineer organic-semiconductor–graphene phototransistors surpassing previously reported photogating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 10^7 A/W and a detectivity of 9 × 10^11 Jones at room temperature. These findings point toward implementing low-cost, flexible materials for amplified imaging at ultralow light levels.S.R. and M.F.C. acknowledge financial support from EPSRC (Grant 464 Nos. EP/J000396/1, EP/K017160/1, EP/K010050/1, EP/G036101/1, EP/M001024/1, and 465 EP/M002438/1), from Royal Society international Exchanges Scheme 2012/R3 and 466 2013/R2 and from European Commission (No. FP7-ICT-2013-613024-GRASP)

    Strain-engineering of twist-angle in graphene/hBN superlattice devices

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from American Chemical Society via the DOI in this recordThe observation of novel physical phenomena such as Hofstadter’s butterfly, topological currents, and unconventional superconductivity in graphene has been enabled by the replacement of SiO2 with hexagonal boron nitride (hBN) as a substrate and by the ability to form superlattices in graphene/hBN heterostructures. These devices are commonly made by etching the graphene into a Hall-bar shape with metal contacts. The deposition of metal electrodes, the design, and specific configuration of contacts can have profound effects on the electronic properties of the devices possibly even affecting the alignment of graphene/hBN superlattices. In this work, we probe the strain configuration of graphene on hBN in contact with two types of metal contacts, two-dimensional (2D) top-contacts and one-dimensional edge-contacts. We show that top-contacts induce strain in the graphene layer along two opposing leads, leading to a complex strain pattern across the device channel. Edge-contacts, on the contrary, do not show such strain pattern. A finite-elements modeling simulation is used to confirm that the observed strain pattern is generated by the mechanical action of the metal contacts clamped to the graphene. Thermal annealing is shown to reduce the overall doping while increasing the overall strain, indicating an increased interaction between graphene and hBN. Surprisingly, we find that the two contact configurations lead to different twist-angles in graphene/hBN superlattices, which converge to the same value after thermal annealing. This observation confirms the self-locking mechanism of graphene/hBN superlattices also in the presence of strain gradients. Our experiments may have profound implications in the development of future electronic devices based on heterostructures and provide a new mechanism to induce complex strain patterns in 2D materials.Engineering and Physical Sciences Research Council (EPSRC)Royal SocietyNewton FundLeverhulme TrustHigher Committee for Education Development in Iraq (HCED)Royal Academy of Engineerin

    Role of defect states in functionalized graphene photodetectors

    Get PDF
    This is the final version of the article. Available from SPIE via the DOI in this record.SPIE Optics + Photonics conference 2017, 6-10 August 2017, San Diego, California, USAThe functionalization of graphene can enhance the optoelectronic properties of graphene, allowing the creation of highly sensitive broadband photodetectors. Presently, the role played by defects, induced by the functionalization of graphene, on the performance of graphene photodetectors is not well understood. Here, we investigate the optoelectronic properties of van der Waals heterostructures comprising of graphene and a functionalized partner, formed by pristine and fluorinated graphene. We find that the electrical properties of graphene are preserved upon formation of the heterostructure. A negligible charge transfer is observed across the interface between the two materials which limits the performance of the photodetector due to the vertical separation of the two materials.J.D.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1). S.R. and M.F.C. acknowledge financial support from EPSRC (Grant No. EP/J000396/1, EP/K017160/1, EP/K010050/1, EP/G036101/1, EP/M001024/1, and EP/M002438/1) and from Royal Society International Exchanges Scheme 2016/R1

    Ultrafast Charge and Exciton Diffusion in Monolayer Films of 9-Armchair Graphene Nanoribbons

    Get PDF
    Determining the electronic transport properties of graphene nanoribbons is crucial for assessing their suitability for applications. So far, this has been highly challenging both through experimental and theoretical approaches. This is particularly the case for graphene nanoribbons that are prepared by chemical vapor deposition, which is a scalable and industry-compatible bottom-up growth method that results in closely packed arrays of ribbons with relatively short lengths of a few tens of nanometers. In this study, the experimental technique of spatiotemporal microscopy is applied to study monolayer films of 9-armchair graphene nanoribbons prepared using this growth method, and combined with linear-scaling quantum transport calculations of arrays of thousands of nanoribbons. Both approaches directly resolve electronic spreading in space and time through diffusion and give an initial diffusivity approaching 200 cm2 s−1 during the first picosecond after photoexcitation. This corresponds to a mobility up to 550 cm2 V−1 s−1. The quasi-free carriers then form excitons, which spread with a diffusivity of tens of cm2 s−1. The results indicate that this relatively large charge carrier mobility is the result of electronic transport not being hindered by defects nor inter-ribbon hopping. This confirms their suitability for applications that require efficient electronic transport.</p
    corecore