1,428 research outputs found
Role of netrin-1 and netrin-1 dependence receptors in colorectal cancers
Although cancer is a multifaceted disease, all cancer types share identical molecular and cellular mechanisms. These mechanisms involve a collection of alterations critical to the normal physiological functioning of cells, such as alterations of growth factor signalling pathways, angiogenesis, cell adhesion signals, DNA replication and apoptotic cell death. Many genes involved in the processes enumerated above are functionally inactive in tumour cells, designating them as putative ‘tumour suppressor genes'. Back in the early 1990s, Vogelstein and colleagues suggested that a gene called DCC (for Deleted in Colorectal Cancer) could be a tumour suppressor gene because it was found to be deleted in more than 70% of colorectal cancers, as well as in many other cancers. During the last 15 years, controversial data have failed to firmly establish whether DCC is indeed a tumour suppressor gene. However, the recent observations that DCC triggers cell death and is a receptor for netrin-1, a molecule recently implicated in colorectal tumorigenesis, have prompted a renewal of interest in the role of DCC in tumorigenesis and suggest that the netrin-1/receptor pairs act as novel negative regulators of tumour development
Web-Based Automatic Feedback on Assignments in Statistics : How Can it Help Students Learn Statistics and Universities Reduce Costs?
A non-experimental study in 2005 suggested that immediate, automatic feedback on assignments
helped to increase study motivation as well as pass rate among engineering students attending an
introductory course in statistics at Oslo University College. In the follow-up study reported here we
used an experimental design assigning the participants randomly to one of two experimental
conditions: The ‘web-supported’ students received immediate, automatic feedback after having
entered their responses to the assignments electronically. The ‘paper-supported’ students received
written feedback on their paper-based submissions several days later. The findings contradicted the
results of the non-experimental study: no significant differences between the groups were found
with regard to final examination grades, study effort (with a certain qualification) and preferences
with regard to the method for submitting answers. Running tutoring costs, however, were much
lower for the web-supported than for the paper-supported students.Therefore, the present methodologically
improved study strengthens the evidence that such learning support may help reduce
running tutoring costs without significantly lowering final examination grades. Reinforcing this
conclusion, certain remaining weaknesses in the experimental procedure open the possibility that
the final examination grades of the paper-supported students have been inflated relative to those of
the web-supported students. Moreover, questionnaire data and informal observations obtained
during this experiment suggest that the tested web-based system of learning support can be
combined with more traditional ways of promoting learning that may help increase learning with
only a small increase in tutoring costs. These challenges with regard to the test methodology and the
design of the learning-support system need to be addressed in new experiments.
Keywords: web-supported learning; automatic feedback; immediate feedback; tutoring costs;
statistic
The dependence receptor notion: from a cell biology paradigm to alternative anti-cancer therapies
The 3rd International Symposium on Carcinogenic Spiral & International Symposium on Tumor Biology in Kanazawa, [DATE]: January 24(Thu)-25(Fri),2013, [Place]:Kanazawa Excel Hotel Tpkyu, Kanazawa, Japan, [Organizers]:Infection/Inflammation-Assisted Acceleration of the Carcinogenic Spiral and its Alteration through Vector Conversion of the Host Response to Tumors / Scientific Research on Innovative Areas, a MEXT Grant-in Aid Projec
Small molecule sensitization to TRAIL is mediated via nuclear localization, phosphorylation and inhibition of chaperone activity of Hsp27
10.1038/cddis.2013.413Cell Death and Disease410
Comparative proteome analysis of three mouse lung adenocarcinoma CMT cell lines with different metastatic potential by two-dimensional gel electrophoresis and mass spectrometry
Udgivelsesdato: 2008-Nov-10Metastasis is a lethal attribute of a cancer and presents a continuing therapeutic challenge. Metastasis is a highly complex process and more knowledge about the mechanisms behind metastasis is highly desirable. Isogenic CMT cell lines were selected from a spontaneous mouse lung adenocarcinoma and characterized in vivo to have different metastatic potential. In this study, the comprehensive protein expression profiles of three of these CMT cell lines at passage 5, 15 and 35 were analyzed by 2-DE separation followed by MS identification. As a result, 82 and 40 unique proteins were found to be significantly up- or down-regulated between cell lines with different metastatic potential at passages 5 and 15, respectively. These proteins were identified by MS and most of them have previously been reported to be related to cancer development and/or metastasis. Bioinformatics analysis indicated that several of the proteins were involved in proteasome, cell-cycle and cell-communication pathways. Among them, some keratins, 14-3-3 proteins and 26S proteasome proteins were identified and their aberrant expression may be directly or indirectly involved in cancer development and metastasis. In conclusion, our comprehensive 2-DE-based proteomics studies revealed some candidate proteins, protein families and signaling pathways, which might be important in cancer development and metastasis
A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis
Extracellular matrix interactions have essential roles in normal physiology and many pathological processes. Although the importance of extracellular matrix interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel-screening platform capable of measuring phenotypic responses to combinations of extracellular matrix molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the extracellular matrix-dependent adhesion of tumour-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumour lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8 or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified extracellular matrix and integrin interactions that could serve as therapeutic targets.National Institutes of Health (U.S.) (Grant K99-CA151968)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service AwardStand Up To Cancer (SU2C/AACR)David H. Koch Institute for Integrative Cancer Research at MIT (CTC Project)Harvard Stem Cell Institute (SG-0046-08-00)National Cancer Center (Postdoctoral Fellowship)National Cancer Institute (U.S.) (U54CA126515)National Cancer Institute (U.S.) (U54CA112967)Howard Hughes Medical InstituteMassachusetts Institute of Technology. Ludwig Center for Molecular Oncolog
Cancer - Cell survival guide
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62618/1/431035a.pd
Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.</p
Proteomic profiling of mitochondria: what does it tell us about the ageing brain?
Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression
Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways.
Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment
- …
