40 research outputs found

    Potential of Functionalized Magnetite (Fe3O4) in Decontamination of Pathogenic Bacteria from Milk

    Get PDF
    Magnetite (Fe3O4) is getting popular due to its super-paramagnetic properties, high biocompatibility and lack of toxicity to humans. Magnetite (Fe3O4) nanoparticles have high surface energy thus these nanoparticles aggregate quickly. This aggregation strongly affects the efficiency of these nanoparticles. So these magnetite nanoparticles are coated with organic or inorganic substance to prevent aggregation. These coatings not only stabilize magnetic nanoparticles but can also be used for further functionalization. The aim of this study was to evaluate the efficiency of functionalized magnetite to remove pathogenic bacteria (E.coli and B.cereus) from milk considering binding capability of magnetite with bacterial cell wall. Magnetite (Fe3O4) was prepared by co-precipitation method and subsequently functionalized with oleic acid (OA) and ethylene diamine (EDA). In present study role of magnetite (Fe3O4) and functionalized magnetite (EDA-Fe3O4, OA-Fe3O4) in removal of pathogenic bacteria (E.coli and B.cereus) from milk was investigated. The morphology of functionalized magnetite was determined by Scanning Electron microscopy (SEM). Their removal efficiency was studied based on time (10, 20 and 30 minutes). Concentration of uncoated magnetite (Fe3O4) and coated magnetite (EDA-Fe3O4, OA-Fe3O4) was fixed at 4mg/50mL. Magnetite was successfully synthesized in range of +/- 3nm. Highest capturing efficiency (74.45%) of oleic acid magnetite (OA-Fe3O4) was observed for Bacillus cereus at 30 minutes. However for Escherichia coli, both ethylene-diamine magnetite (EDA-Fe3O4) and oleic acid magnetite (OA-Fe3O4) showed maximum capturing efficiency (61.65% and 63.91% respectively). It was concluded from the study that magnetite coated with oleic acid and ethylenediamine removed pathogenic bacteria from milk efficiently. However, more research is required to study the effect of these magnetic nanoparticles on nutritional composition of milk.Peer reviewe

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: insights from the LUNG SAFE study

    Get PDF
    Contains fulltext : 218568.pdf (publisher's version ) (Open Access)BACKGROUND: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. METHODS: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 >/= 0.60 during hyperoxemia). RESULTS: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). CONCLUSIONS: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. TRIAL REGISTRATION: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073

    Potential of Functionalized Magnetite (Fe3O4) in Decontamination of Pathogenic Bacteria from Milk

    No full text
    Magnetite (Fe3O4) is getting popular due to its super-paramagnetic properties, high biocompatibility and lack of toxicity to humans. Magnetite (Fe3O4) nanoparticles have high surface energy thus these nanoparticles aggregate quickly. This aggregation strongly affects the efficiency of these nanoparticles. So these magnetite nanoparticles are coated with organic or inorganic substance to prevent aggregation. These coatings not only stabilize magnetic nanoparticles but can also be used for further functionalization. The aim of this study was to evaluate the efficiency of functionalized magnetite to remove pathogenic bacteria (E.coli and B.cereus) from milk considering binding capability of magnetite with bacterial cell wall. Magnetite (Fe3O4) was prepared by co-precipitation method and subsequently functionalized with oleic acid (OA) and ethylene diamine (EDA). In present study role of magnetite (Fe3O4) and functionalized magnetite (EDA-Fe3O4, OA-Fe3O4) in removal of pathogenic bacteria (E.coli and B.cereus) from milk was investigated. The morphology of functionalized magnetite was determined by Scanning Electron microscopy (SEM). Their removal efficiency was studied based on time (10, 20 and 30 minutes). Concentration of uncoated magnetite (Fe3O4) and coated magnetite (EDA-Fe3O4, OA-Fe3O4) was fixed at 4mg/50mL. Magnetite was successfully synthesized in range of and#177;3nm. Highest capturing efficiency (74.45%) of oleic acid magnetite (OA-Fe3O4) was observed for Bacillus cereus at 30 minutes. However for Escherichia coli, both ethylene-diamine magnetite (EDA-Fe3O4) and oleic acid magnetite (OA-Fe3O4) showed maximum capturing efficiency (61.65% and 63.91% respectively). It was concluded from the study that magnetite coated with oleic acid and ethylenediamine removed pathogenic bacteria from milk efficiently. However, more research is required to study the effect of these magnetic nanoparticles on nutritional composition of milk.</jats:p

    Seroprevalence of SARS CoV 2 specific Ig G antibodies in District Srinagar, Kashmir: a population based study

    Full text link
    Background: The seroprevalence studies are conducted with the aim of estimating the extent of SARS CoV2 infection in any community. A cross sectional population based study was conducted in Srinagar district of Kashmir, India so as to provide relevant information on the proportion of people who have experienced a recent or past infection.Methods: An estimated sample size of 2400 was calculated based on anticipated seroprevalence of 20% and an absolute error of 2.5%. 20 clusters were selected using 2 stage cluster sampling. A set of questions on a mobile based application i.e Epicollect 5 was used to collect information on various variables and 3-5 ml of venous blood was taken for Ig G antibody testing. Chemiluminiscent Microparticle Immunoassay (CMIA) procedure using fully automated analyser by Abbott with sensitivity of 100% and specificity of 99.6% was used to detect IgG antibodies against SARS COVID-2.Results: 2480 eligible individuals participated in the study. The overall seroprevalence of Ig G antibodies against SARS-CoV 2 in the current study was 40.6% (95% CI 38.7-42.6), with seroprevalence being significantly higher among females (44.7% as compared to 37.5%).  Age standardized seroprevalence revealed that seroprevalence increased with the increasing age.Conclusions: The findings of Seroprevalence study may fail to reveal the true picture of covid-19 infection as there were certain participants who were positive for COVID on RTPCR but were IgG negative. Thus, the individual variation of immune response to the virus, role of mucosal Ig A antibodies and T cell mediated immunity cannot be ruled out.</jats:p
    corecore