10 research outputs found
Magnetic Shielding of Soft Protons in Future X-Ray Telescopes: The Case of the ATHENA Wide Field Imager
Both interplanetary space and Earth’s magnetosphere are populated by low-energy (≤300 keV) protons that are potentially able to scatter on the reflecting surface of the Wolter-I optics of X-ray focusing telescopes and reach the focal plane. This phenomenon, depending on the X-ray instrumentation, can dramatically increase the background level, reducing the sensitivity or, in the most extreme cases, compromising the observation itself. The use of a magnetic diverter, deflecting protons away from the field of view, requires a detailed characterization of their angular and energy distribution when exiting the mirror. We present the first end-to-end Geant4 simulation of proton scattering by X-ray optics and the consequent interaction with the diverter field and the X-ray detector assembly, selecting the ATHENA Wide Field Imager as a case study for the evaluation of the residual, soft-proton-induced background. We find that in the absence of a magnetic diverter, protons are indeed funneled toward the focal plane, with a focused non-X-ray background well above the level required by ATHENA science objectives (5 × 10‑4 counts cm‑2 s‑1 keV‑1), for all the plasma regimes encountered in both L1 and L2 orbits. These results set the proton diverter as a mandatory shielding system on board the ATHENA mission and all high throughput X-ray telescopes operating in the interplanetary space. For a magnetic field computed to deflect 99% of the protons that would otherwise reach the WFI, Geant4 simulations show that this configuration, in the assumption of a uniform field, would efficiently shield the focal plane, yielding a residual background level of the order or below the requirement
Magnetic Shielding of Soft Protons in Future X-Ray Telescopes: The Case of the ATHENA Wide Field Imager
Recommended from our members
eROSITA on SRG
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian Spektrum-Roentgen-Gamma (SRG) mission which is scheduled for launch in late 2012. eROSITA is fully approved and funded by the German Space Agency DLR and the Max-Planck-Society. The instrument development is in phase C/D since fall 2009. The design driving science is the detection 100.000 Clusters of Galaxies up to redshift z similar to 1.3 in order to study the large scale structure in the Universe and test cosmological models, especially Dark Energy. This will be accomplished by an all-sky survey lasting for four years plus a phase of pointed observations. eROSITA consists of seven Wolter-I telescope modules, each equipped with 54 Wolter-I shells having an outer diameter of 360 mm. This would provide an effective area of similar to 1500 cm(2) at 1.5 keV and an on axis PSF HEW of 15 arcsec resulting in an effective angular resolution of 28 - 30 arcsec, averaged over the field of view. In the focus of each mirror module, a fast framestore pn-CCD provides a field of view of 1 degrees in diameter
The enhanced X-ray Timing and Polarimetry mission—eXTP
International audienceIn this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources. The paper provides a detailed description of: (1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload, (2) the elements and functions of the mission, from the spacecraft to the ground segment
The enhanced x-ray timing and polarimetry mission – eXTP: an update on its scientific cases, mission profile and development status
The enhanced x-ray timing and polarimetry mission (eXTP) is a flagship observatory for x-ray timing, spectroscopy and polarimetry developed by an international consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the universe. eXTP will, in addition, be a powerful x-ray observatory. The mission will continuously monitor the x-ray sky, and will enable multi-wavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022
