699 research outputs found
Downregulation of Rap1GAP contributes to Ras transformation.
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors
The use of nanocrystal quantum dot as fluorophore reporters in molecular beacon-based assays
textversion:publishe
Protein phosphatase 2A potentiates activity of promoters containing AP-1-binding elements.
The involvement of serine/threonine protein phosphatases in signaling pathways which modulate the activity of the transcription factor AP-1 was examined. Purified protein phosphatase types 1 (PP1) and 2A (PP2A) were microinjected into cell lines containing stably transfected lacZ marker genes under the control of an enhancer recognized by AP-1. Microinjection of PP2A potentiated serum-stimulated beta-galactosidase expression from the AP-1-regulated promoter. Similarly, transient expression of the PP2A catalytic subunit with c-Jun resulted in a synergistic transactivation of an AP-1-regulated reporter gene. PP2A, but not PP1, potentiated serum-induced c-Jun expression, which has been previously shown to be autoregulated by AP-1 itself. Consistent with these results, PP2A dephosphorylated c-Jun on negative regulatory sites in vitro, suggesting one possible direct mechanism for the effects of PP2A on AP-1 activity. Microinjection of PP2A had no effect on cyclic AMP (cAMP)-induced expression of a reporter gene containing a cAMP-regulated promoter, while PP1 injection abolished cAMP-induced gene expression. Taken together, these results suggest a specific role for PP2A in signal transduction pathways that regulate AP-1 activity and c-Jun expression.</jats:p
Heat treatment prior to testing allows detection of antigen of Dirofilaria immitis in feline serum
BACKGROUND: Diagnosis of Dirofilaria immitis infection in cats is complicated by the difficulty associated with reliable detection of antigen in feline blood and serum samples. METHODS: To determine if antigen-antibody complex formation may interfere with detection of antigen in feline samples, we evaluated the performance of four different commercially available heartworm tests using serum samples from six cats experimentally infected with D. immitis and confirmed to harbor a low number of adult worms (mean = 2.0). Sera collected 168 (n = 6), 196 (n = 6), and 224 (n = 6) days post infection were tested both directly and following heat treatment. RESULTS: Antigen was detected in serum samples from 0 or 1 of 6 infected cats using the assays according to manufacturer’s directions, but after heat treatment of serum samples, as many as 5 of 6 cats had detectable antigen 6–8 months post infection. Antibodies to D. immitis were detected in all six infected cats by commercial in-clinic assay and at a reference laboratory. CONCLUSIONS: These results indicate that heat treatment of samples prior to testing can improve the sensitivity of antigen assays in feline patients, supporting more accurate diagnosis of this infection in cats. Surveys conducted by antigen testing without prior heat treatment of samples likely underestimate the true prevalence of infection in cats
Tularaemia: A challenging zoonosis
In recent years, several emerging zoonotic vector-borne infections with potential impact on human health have been identified in Europe, including tularaemia, caused by Francisella tularensis.This remarkable pathogen, one of the most virulent microorganisms currently known, has been
detected in increasingly new settings and in a wide range of wild species, including lagomorphs, rodents, carnivores, fish and invertebrate arthropods. Also, a renewed concern has arisen with regard
to F. tularensis: its potential use by bioterrorists. Based on the information published concerning the latest outbreaks, the aim of this paper is to review the main features of the agent, its biology,
immunology and epidemiology. Moreover, special focus will be given to zoonotic aspects of the disease, as tularaemia outbreaks in human populations have been frequently associated with disease in animals
High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides
To meet the growing demand for synthetic genes more robust, scalable and inexpensive gene assembly technologies must be developed. Here, we present a protocol for high-quality gene assembly directly from low-cost marginal-quality microarray-synthesized oligonucleotides. Significantly, we eliminated the time- and money-consuming oligonucleotide purification steps through the use of hybridization-based selection embedded in the assembly process. The protocol was tested on mixtures of up to 2000 oligonucleotides eluted directly from microarrays obtained from three different chip manufacturers. These mixtures containing <5% perfect oligos, and were used directly for assembly of 27 test genes of different sizes. Gene quality was assessed by sequencing, and their activity was tested in coupled in vitro transcription/translation reactions. Genes assembled from the microarray-eluted material using the new protocol matched the quality of the genes assembled from >95% pure column-synthesized oligonucleotides by the standard protocol. Both averaged only 2.7 errors/kb, and genes assembled from microarray-eluted material without clonal selection produced only 30% less protein than sequence-confirmed clones. This report represents the first demonstration of cost-efficient gene assembly from microarray-synthesized oligonucleotides. The overall cost of assembly by this method approaches 5¢ per base, making gene synthesis more affordable than traditional cloning
- …
