2,065 research outputs found

    A Monte Carlo approach to mean-square approximation

    Get PDF
    Monte Carlo algorithm for mean square approximation

    Superfluidity versus localization in bulk 4He at zero temperature

    Full text link
    We present a zero-temperature quantum Monte Carlo calculation of liquid 4^4He immersed in an array of confining potentials. These external potentials are centered in the lattice sites of a fcc solid geometry and, by modifying their well depth and range, the system evolves from a liquid phase towards a progressively localized system which mimics a solid phase. The superfluid density decreases with increasing order, reaching a value ρs/ρ=0.079(16) \rho_{\rm s}/\rho = 0.079(16) when the Lindemann's ratio of the model equals the experimental value for solid 4^4He.Comment: 5 pages,5 figure

    Magnetic Properties of a Two-Dimensional Mixed-Spin System

    Full text link
    Using a Langmuir-Blodgett (LB) synthesis method, novel two-dimensional (2D) mixed-spin magnetic systems, in which each magnetic layer is both structurally and magnetically isolated, have been generated. Specifically, a 2D Fe-Ni cyanide-bridged network with a face-centered square grid structure has been magnetically and structurally characterized. The results indicate the presence of ferromagnetic exchange interactions between the Fe3+^{3+} (S=1/2S=1/2) and Ni2+^{2+} (S=1) centers.Comment: 2 pages, 3 figs., submitted 23rd International Conference on Low Temperature Physics (LT-23), Aug. 200

    Magnetodielectric coupling of infrared phonons in single crystal Cu2_{2}OSeO3_{3}

    Get PDF
    Reflection and transmission as a function of temperature have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2_{2}OSeO3_{3} utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (Tc60T_{c}\sim 60~K). Assignments to strong far infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature

    Size dependence of the photoinduced magnetism and long-range ordering in Prussian blue analog nanoparticles of rubidium cobalt hexacyanoferrate

    Full text link
    Nanoparticles of rubidium cobalt hexacyanoferrate (Rbj_jCok_k[Fe(CN)6_6]ln_l \cdot nH2_2O) were synthesized using different concentrations of the polyvinylpyrrolidone (PVP) to produce four different batches of particles with characteristic diameters ranging from 3 to 13 nm. Upon illumination with white light at 5 K, the magnetization of these particles increases. The long-range ferrimagnetic ordering temperatures and the coercive fields evolve with nanoparticle size. At 2 K, particles with diameters less than approximately 10 nm provide a Curie-like magnetic signal.Comment: 10 pages, 6 figures in text, expanded text and dat
    corecore