2,065 research outputs found
A Monte Carlo approach to mean-square approximation
Monte Carlo algorithm for mean square approximation
Superfluidity versus localization in bulk 4He at zero temperature
We present a zero-temperature quantum Monte Carlo calculation of liquid
He immersed in an array of confining potentials. These external potentials
are centered in the lattice sites of a fcc solid geometry and, by modifying
their well depth and range, the system evolves from a liquid phase towards a
progressively localized system which mimics a solid phase. The superfluid
density decreases with increasing order, reaching a value when the Lindemann's ratio of the model equals the experimental
value for solid He.Comment: 5 pages,5 figure
Magnetic Properties of a Two-Dimensional Mixed-Spin System
Using a Langmuir-Blodgett (LB) synthesis method, novel two-dimensional (2D)
mixed-spin magnetic systems, in which each magnetic layer is both structurally
and magnetically isolated, have been generated. Specifically, a 2D Fe-Ni
cyanide-bridged network with a face-centered square grid structure has been
magnetically and structurally characterized. The results indicate the presence
of ferromagnetic exchange interactions between the Fe () and
Ni (S=1) centers.Comment: 2 pages, 3 figs., submitted 23rd International Conference on Low
Temperature Physics (LT-23), Aug. 200
Magnetodielectric coupling of infrared phonons in single crystal CuOSeO
Reflection and transmission as a function of temperature have been measured
on a single crystal of the magnetoelectric ferrimagnetic compound
CuOSeO utilizing light spanning the far infrared to the visible
portions of the electromagnetic spectrum. The complex dielectric function and
optical properties were obtained via Kramers-Kronig analysis and by fits to a
Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric
effect near the transition temperature (~K). Assignments to
strong far infrared phonon modes have been made, especially those exhibiting
anomalous behavior around the transition temperature
Size dependence of the photoinduced magnetism and long-range ordering in Prussian blue analog nanoparticles of rubidium cobalt hexacyanoferrate
Nanoparticles of rubidium cobalt hexacyanoferrate
(RbCo[Fe(CN)]HO) were synthesized using different
concentrations of the polyvinylpyrrolidone (PVP) to produce four different
batches of particles with characteristic diameters ranging from 3 to 13 nm.
Upon illumination with white light at 5 K, the magnetization of these particles
increases. The long-range ferrimagnetic ordering temperatures and the coercive
fields evolve with nanoparticle size. At 2 K, particles with diameters less
than approximately 10 nm provide a Curie-like magnetic signal.Comment: 10 pages, 6 figures in text, expanded text and dat
- …
