1,088 research outputs found

    Teleporting a quantum state in a subset of the whole Hilbert space

    Full text link
    We investigate the lower bound of the amount of entanglement for faithfully teleporting a quantum state belonging to a subset of the whole Hilbert space. Moreover, when the quantum state belongs to a set composed of two states, a probabilistic teleportation scheme is presented using a non-maximally entangled state as the quantum channel. We also calculate the average transmission efficiency of this scheme.Comment: 4 pages, no figur

    Embedding Representation of Academic Heterogeneous Information Networks Based on Federated Learning

    Full text link
    Academic networks in the real world can usually be portrayed as heterogeneous information networks (HINs) with multi-type, universally connected nodes and multi-relationships. Some existing studies for the representation learning of homogeneous information networks cannot be applicable to heterogeneous information networks because of the lack of ability to issue heterogeneity. At the same time, data has become a factor of production, playing an increasingly important role. Due to the closeness and blocking of businesses among different enterprises, there is a serious phenomenon of data islands. To solve the above challenges, aiming at the data information of scientific research teams closely related to science and technology, we proposed an academic heterogeneous information network embedding representation learning method based on federated learning (FedAHE), which utilizes node attention and meta path attention mechanism to learn low-dimensional, dense and real-valued vector representations while preserving the rich topological information and meta-path-based semantic information of nodes in network. Moreover, we combined federated learning with the representation learning of HINs composed of scientific research teams and put forward a federal training mechanism based on dynamic weighted aggregation of parameters (FedDWA) to optimize the node embeddings of HINs. Through sufficient experiments, the efficiency, accuracy and feasibility of our proposed framework are demonstrated

    Unsupervised Semantic Representation Learning of Scientific Literature Based on Graph Attention Mechanism and Maximum Mutual Information

    Full text link
    Since most scientific literature data are unlabeled, this makes unsupervised graph-based semantic representation learning crucial. Therefore, an unsupervised semantic representation learning method of scientific literature based on graph attention mechanism and maximum mutual information (GAMMI) is proposed. By introducing a graph attention mechanism, the weighted summation of nearby node features make the weights of adjacent node features entirely depend on the node features. Depending on the features of the nearby nodes, different weights can be applied to each node in the graph. Therefore, the correlations between vertex features can be better integrated into the model. In addition, an unsupervised graph contrastive learning strategy is proposed to solve the problem of being unlabeled and scalable on large-scale graphs. By comparing the mutual information between the positive and negative local node representations on the latent space and the global graph representation, the graph neural network can capture both local and global information. Experimental results demonstrate competitive performance on various node classification benchmarks, achieving good results and sometimes even surpassing the performance of supervised learning

    Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multimodal Large Model for Efficient Cross-modal Representation Learning

    Full text link
    In recent years, pre-trained multimodal large models have attracted widespread attention due to their outstanding performance in various multimodal applications. Nonetheless, the extensive computational resources and vast datasets required for their training present significant hurdles for deployment in environments with limited computational resources. To address this challenge, we propose a novel dynamic self-adaptive multiscale distillation from pre-trained multimodal large model for efficient cross-modal representation learning for the first time. Unlike existing distillation methods, our strategy employs a multiscale perspective, enabling the extraction structural knowledge across from the pre-trained multimodal large model. Ensuring that the student model inherits a comprehensive and nuanced understanding of the teacher knowledge. To optimize each distillation loss in a balanced and efficient manner, we propose a dynamic self-adaptive distillation loss balancer, a novel component eliminating the need for manual loss weight adjustments and dynamically balances each loss item during the distillation process. Our methodology streamlines pre-trained multimodal large models using only their output features and original image-level information, requiring minimal computational resources. This efficient approach is suited for various applications and allows the deployment of advanced multimodal technologies even in resource-limited settings. Extensive experiments has demonstrated that our method maintains high performance while significantly reducing model complexity and training costs. Moreover, our distilled student model utilizes only image-level information to achieve state-of-the-art performance on cross-modal retrieval tasks, surpassing previous methods that relied on region-level information.Comment: 10 page
    corecore