337 research outputs found

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    Asymptotics of lattice walks via analytic combinatorics in several variables

    Get PDF
    We consider the enumeration of walks on the two dimensional non-negative integer lattice with short steps. Up to isomorphism there are 79 unique two dimensional models to consider, and previous work in this area has used the kernel method, along with a rigorous computer algebra approach, to show that 23 of the 79 models admit D-finite generating functions. In 2009, Bostan and Kauers used Pad\'e-Hermite approximants to guess differential equations which these 23 generating functions satisfy, in the process guessing asymptotics of their coefficient sequences. In this article we provide, for the first time, a complete rigorous verification of these guesses. Our technique is to use the kernel method to express 19 of the 23 generating functions as diagonals of tri-variate rational functions and apply the methods of analytic combinatorics in several variables (the remaining 4 models have algebraic generating functions and can thus be handled by univariate techniques). This approach also shows the link between combinatorial properties of the models and features of its asymptotics such as asymptotic and polynomial growth factors. In addition, we give expressions for the number of walks returning to the x-axis, the y-axis, and the origin, proving recently conjectured asymptotics of Bostan, Chyzak, van Hoeij, Kauers, and Pech.Comment: 10 pages, 3 tables, as accepted to proceedings of FPSAC 2016 (without conference formatting

    A Baxter class of a different kind, and other bijective results using tableau sequences ending with a row shape

    Get PDF
    Tableau sequences of bounded height have been central to the analysis of k-noncrossing set partitions and matchings. We show here that familes of sequences that end with a row shape are particularly compelling and lead to some interesting connections. First, we prove that hesitating tableaux of height at most two ending with a row shape are counted by Baxter numbers. This permits us to define three new Baxter classes which, remarkably, do not obviously possess the antipodal symmetry of other known Baxter classes. We then conjecture that oscillating tableau of height bounded by k ending in a row are in bijection with Young tableaux of bounded height 2k. We prove this conjecture for k at most eight by a generating function analysis. Many of our proofs are analytic in nature, so there are intriguing combinatorial bijections to be found.Comment: 10 pages, extended abstrac

    Change of basis for m-primary ideals in one and two variables

    Full text link
    Following recent work by van der Hoeven and Lecerf (ISSAC 2017), we discuss the complexity of linear mappings, called untangling and tangling by those authors, that arise in the context of computations with univariate polynomials. We give a slightly faster tangling algorithm and discuss new applications of these techniques. We show how to extend these ideas to bivariate settings, and use them to give bounds on the arithmetic complexity of certain algebras.Comment: In Proceedings ISSAC'19, ACM, New York, USA. See proceedings version for final formattin

    Tableau sequences, open diagrams, and Baxter families

    Full text link
    Walks on Young's lattice of integer partitions encode many objects of algebraic and combinatorial interest. Chen et al. established connections between such walks and arc diagrams. We show that walks that start at \varnothing, end at a row shape, and only visit partitions of bounded height are in bijection with a new type of arc diagram -- open diagrams. Remarkably two subclasses of open diagrams are equinumerous with well known objects: standard Young tableaux of bounded height, and Baxter permutations. We give an explicit combinatorial bijection in the former case.Comment: 20 pages; Text overlap with arXiv:1411.6606. This is the full version of that extended abstract. Conjectures from that work are proved in this wor

    On 3-dimensional lattice walks confined to the positive octant

    Full text link
    Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in {0,±1}2\{0, \pm 1\}^2: the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3-dimensional walks confined to the positive octant. The first difficulty is their number: there are 11074225 non-trivial and non-equivalent step sets in {0,±1}3\{0, \pm 1\}^3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 -- the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure, which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear.Comment: Final version, to appear in Annals of Combinatorics. 36 page
    corecore