5 research outputs found

    Analysis of CSN 12050 Carbon Steel in Dry Turning Process for Product Sustainability Optimization Using Taguchi Technique

    No full text
    The aim of this research paper is to investigate the machinability of CSN 12050 carbon steel bars using carbide insert tool in order to utilize the optimum cutting parameters by employing Taguchi approach. Experiments have been performed under dry cutting condition using an optimization approach according to Taguchi’s L9(34) orthogonal arrays; signal-to-noise ratio tests are designed. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters on the material removal rate (MRR). The results were analyzed using signal-to-noise ratios (S/N); 3D surface graphs, main effect graphs of mean, and predictive equations are employed to study the performance characteristics. The optimal parameters resulted as A3B2C3 (i.e., cutting speed 275 (m/min), depth of cut 0.35 (mm), and feed rate 0.25 (mm/rev), respectively). In the present study, there is an improvement of 5.22 dB at optimal cutting conditions for each significant MRR response parameters such as cutting speed, depth of cut, and feed rate. With these proposed optimal parameters, it is possible to optimize machinability for product sustainability.</jats:p

    Analysis of CSN 12050 carbon steel in dry turning process for product sustainability optimization using taguchi technique

    Get PDF
    The aim of this research paper is to investigate the machinability of CSN 12050 carbon steel bars using carbide insert tool in order to utilize the optimum cutting parameters by employing Taguchi approach. Experiments have been performed under dry cutting condition using an optimization approach according to Taguchi’s 9(34) orthogonal arrays; signal-to-noise ratio tests are designed. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters on thematerial removal rate (MRR).The results were analyzed using signal-to-noise ratios (S/N); 3D surface graphs, main effect graphs of mean, and predictive equations are employed to study the performance characteristics.The optimal parameters resulted as 323 (i.e., cutting speed 275 (m/min), depth of cut 0.35 (mm), and feed rate 0.25 (mm/rev), respectively). In the present study, there is an improvement of 5.22 dB at optimal cutting conditions for each significant MRR response parameters such as cutting speed, depth of cut, and feed rate.With these proposed optimal parameters, it is possible to optimize machinability for product sustainability.DFG-Publikationsfonds 201

    Characterization of Bamboo Culm as Potential Fibre for Composite Development

    No full text
    This study aims to evaluate how age, harvesting seasons, and culm height affect the properties of various bamboo species. The properties of bamboo fibres for composite development in Ethiopia have not been investigated so far. In this study, the properties of Y. alpina and B. oldhamii were scientifically investigated for bamboo culm structural applications and bamboo fibre composite development based on age and the harvesting season. Y. alpina was collected at Injibara and Mekaneselam which are located in east Gojjam and south wollo, whereas B. oldhamii was collected at Kombolcha which is located in south Wollo, Ethiopia. Three representatives of bamboo plants were collected in the three regions, namely from three age groups, across two harvesting months. The highest and lowest moisture content and shrinkage were measured at the ages of one year and three years, respectively, whereas basic densities were measured at the ages of three years and one year. The harvest month of November yields higher moisture content and shrinkage but lower basic densities compared to February. Yushania alpina has a higher moisture content and shrinkage but lower basic densities compared to Bamusa oldhamii. The current research demonstrates that the three-year-old groups and the harvesting month of February produce yields more suited for construction and structural purposes due to the ensuing good dimensional stability after drying. From the highest to the lowest percentage of the degree of crystallinity of the yield, it is that derived from Inj., followed by Meka., and then Kombolcha, respectively. Bamboo fibres have high powder crystals and degradation temperatures which make them suitable for composite development at two year old. Yushania alpina has a higher degree of crystallinity and degradation temperature of cellulose compared to Bambusa oldhamii
    corecore