3,340 research outputs found
A comparative study of water movement in leaf scorch decline affected and healthy coconut palms using lithium as a non-radioactive tracer
Comparison of photoexcited p-InAs THz radiation source with conventional thermal radiation sources
P-type InAs excited by ultrashort optical pulses has been shown to be a strong emitter of terahertz radiation. In a direct comparison between a p-InAs emitter and conventional thermal radiationsources, we demonstrate that under typical excitation conditions p-InAs produces more radiation below 1.2 THz than a globar. By treating the globar as a blackbody emitter we calibrate a siliconbolometer which is used to determine the power of the p-InAs emitter. The emitted terahertz power was found to be 98±10 nW in this experiment
Braking the Gas in the beta Pictoris Disk
(Abridged) The main sequence star beta Pictoris hosts the best studied
circumstellar disk to date. Nonetheless, a long-standing puzzle has been around
since the detection of metallic gas in the disk: radiation pressure from the
star should blow the gas away, yet the observed motion is consistent with
Keplerian rotation. In this work we search for braking mechanisms that can
resolve this discrepancy. We find that all species affected by radiation force
are heavily ionized and dynamically coupled into a single fluid by Coulomb
collisions, reducing the radiation force on species feeling the strongest
acceleration. For a gas of solar composition, the resulting total radiation
force still exceeds gravity, while a gas of enhanced carbon abundance could be
self-braking. We also explore two other braking agents: collisions with dust
grains and neutral gas. Grains surrounding beta Pic are photoelectrically
charged to a positive electrostatic potential. If a significant fraction of the
grains are carbonaceous (10% in the midplane and larger at higher altitudes),
ions can be slowed down to satisfy the observed velocity constraints. For
neutral gas to brake the coupled ion fluid, we find the minimum required mass
to be 0.03 M_\earth, consistent with observed upper limits of the
hydrogen column density, and substantially reduced relative to previous
estimates. Our results favor a scenario in which metallic gas is generated by
grain evaporation in the disk, perhaps during grain-grain collisions. We
exclude a primordial origin for the gas, but cannot rule out the possibility of
its production by falling evaporating bodies near the star. We discuss the
implications of this work for observations of gas in other debris disks.Comment: 19 pages, 12 figures, emulateapj. Accepted for publication in Ap
Design and fabrication of a SIO2/ST-cut quartz love mode surface acoustic wave transducer for operation in liquid media
Love mode surface acoustic wave (SAW) transducers were designed and fabricated by depositing silicon dioxide on a ST-cut quartz crystal wafer using r.f. magnetron sputtering. Two different propagation directions have been investigated by aligning the SAW finger pattern along the x-axis propagation direction and the direction orthogonal to the x-axis of the ST-cut quartz crystal. The latter, in which the propagation mode is dominantly the Love mode, shows promising characteristics for use as a high frequency SAW transducer because of high acoustic wave propagation velocity and electromechanical coupling coefficient. Phase and group velocity, capacitance per unit length of electrodes, insertion loss and input admittance, of two transducers, with different alignments, have been measured and compared
A terahertz band-pass resonator based on enhanced reflectivity using spoof surface plasmons
We demonstrate a band-pass resonator in the terahertz (THz) range, based on a frequency-selective designer reflector. The resonator consists of a parallel-plate waveguide, a designed groove pattern cut into the output facet of each plate, and a reflecting mirror. The patterned facet supports a spoof surface plasmon mode, which modifies the reflectivity at the waveguide output facet by interacting with the waveguide mode. By tuning the geometrical parameters of the groove pattern, the reflectivity at the patterned output facet can be increased up to ~100% for a selected frequency. Broadband THz waves are quasi-optically coupled into this resonator and reflected multiple times from the patterned facet. This leads to a narrowing of the spectrum at the selected frequency. The Q value of the resonator increases as the number of reflections on the patterned facet increases, reaching ~25 when the THz wave has experienced 12 reflections
Quadratus femoris: an EMG investigation during walking and running
Dysfunction of hip stabilizing muscles such as quadratus femoris (QF) is identified as a potential source of lower extremity injury during functional tasks like running. Despite these assumptions, there are currently no electromyography (EMG) data that establish the burst activity profile of QF during any functional task like walking or running. The objectives of this study were to characterize and compare the EMG activity profile of QF while walking and running (primary aim) and describe the direction specific action of QF (secondary aim). A bipolar fine-wire intramuscular electrode was inserted via ultrasound guidance into the QF of 10 healthy participants (4 females). Ensemble curves were generated from four walking and running trials, and normalized to maximum voluntary isometric contractions (MVICs). Paired t-tests compared the temporal and amplitude EMG variables. The relative activity of QF in the MVICs was calculated. The QF displayed moderate to high amplitude activity in the stance phase of walking and very high activity during stance in running. During swing, there was minimal QF activity recorded during walking and high amplitudes were present while running (run vs walk effect size = 4.23,
A comparative study of water movement in leaf scorch decline attached and healthy coconut palms using lithium a non-radioactive tracer
The effect of thermophoresis on the discharge parameters in complex plasma experiments
Thermophoresis is a tool often applied in complex plasma experiments. One of
the usual stated benefits over other experimental tools is that changes induced
by thermophoresis neither directly depend on, nor directly influence, the
plasma parameters. From electronic data, plasma emission profiles in the
sheath, and Langmuir probe data in the plasma bulk, we conclude that this
assumption does not hold. An important effect on the levitation of dust
particles in argon plasma is observed as well. The reason behind the changes in
plasma parameters seems to be the change in neutral atom density accompanying
the increased gas temperature while running at constant pressure.Comment: 14 pages, 12 figure
- …
