34,574 research outputs found
Quantitative test of a quantum theory for the resistive transition in a superconducting single-walled carbon nanotube bundle
The phenomenon of superconductivity depends on the coherence of the phase of
the superconducting order parameter. The resistive transition in
quasi-one-dimensional (quasi-1D) superconductors is broad because of a large
phase fluctuation. We show that the resistive transition of a superconducting
single-walled carbon nanotube bundle is in quantitative agreement with the
Langer-Ambegaokar-McCumber-Halperin (LAMH) theory. We also demonstrate that the
resistive transition below T^*_c = 0.89T_c0 is simply proportional to exp
[-(3\beta T^*_c/T)(1-T/T^*_c)^3/2], where the barrier height has the same form
as that predicted by the LAMH theory and T_c0 is the mean field superconducting
transition temperature.Comment: 4 pages, 3 figure
An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL
An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy
Dark viscous fluid described by a unified equation of state in cosmology
We generalize the CDM model by introducing a unified EOS to describe
the Universe contents modeled as dark viscous fluid, motivated by the fact that
a single constant equation of state (EOS) () reproduces the
CDM model exactly. This EOS describes the perfect fluid term, the
dissipative effect, and the cosmological constant in a unique framework and the
Friedmann equations can be analytically solved. Especially, we find a relation
between the EOS parameter and the renormalizable condition of a scalar field.
We develop a completely numerical method to perform a minimization to
constrain the parameters in a cosmological model directly from the Friedmann
equations, and employ the SNe data with the parameter measured
from the SDSS data to constrain our model. The result indicates that the
dissipative effect is rather small in the late-time Universe.Comment: 4 pages, 2 figures. v2: new materials added. v3: matches the version
to appear in IJMP
Capital and macroeconomic instability in a discrete-time model with forward-looking interest rate rules
The authors establish the necessary and sufficient conditions for local real determinacy in a discrete-time production economy with monopolistic competition and a quadratic price adjustment cost under forward-looking policy rules, for the case where capital is in exogenously fixed supply and the case with endogenous capital accumulation. Using these conditions, they show that (i) indeterminacy is more likely to occur with a greater share of payment to capital in value-added production cost; (ii) indeterminacy can be more or less likely to occur with constant capital than with variable capital; (iii) indeterminacy is more likely to occur when prices are modelled as jump variables than as predetermined variables; (iv) indeterminacy is less likely to occur with a greater degree of steady-state monopolistic distortions; and (v) indeterminacy is less likely to occur with a greater degree of price stickiness or with a higher steady-state inflation rate. In contrast to some existing research, the authors' analysis indicates that capital tends to lead to macroeconomic instability by affecting firms' pricing behavior in product markets rather than households' arbitrage activity in asset markets even under forward-looking policy rules.Capital ; Interest rates
Low-lying states in Mg: a beyond relativistic mean-field investigation
The recently developed model of three-dimensional angular momentum projection
plus generator coordinate method on top of triaxial relativistic mean-field
states has been applied to study the low-lying states of Mg. The effects
of triaxiality on the low-energy spectra and E0 and E2 transitions are
examined.Comment: 6 pages, 3 figures, 1 table, talk presented at the 17th nuclear
physics conference "Marie and Pierre Curie" Kazimierz Dolny, 22-26th
September 2010, Polan
Massive Overlap Fermions on Anisotropic Lattices
We formulate the massive overlap fermions on anisotropic lattices.
We find that the dispersion relation for the overlap fermion resembles the
continuum form in the low-momentum region once the bare parameters are properly
tuned. The quark self-energy and the quark field renormalization constants are
calculated to one-loop in bare lattice perturbation theory.
We argue that massive domain wall quarks might be helpful in lattice QCD
studies on heavy-light hadron spectroscopy.Comment: 21 pages, 5 figures, one reference added compared with v.
- …
