1,780 research outputs found
Network Entropy measures applied to different systemic perturbations of cell basal state
NOTE: includes supplementary materialNOTE: includes supplementary materialNOTE: includes supplementary materialWe characterize different cell states, related to cancer and ageing phenotypes, by a measure of entropy of network ensembles, integrating gene expression values and protein interaction networks. The entropy measure estimates the parameter space available to the network ensemble, that can be interpreted as the level of plasticity of the system for high entropy values (the ability to change its internal parameters, e.g. in response to environmental stimuli), or as a fine tuning of the parameters (that restricts the range of possible parameter values) in the opposite case. This approach can be applied at different scales, from whole cell to single biological functions, by defining appropriate subnetworks based on a priori biological knowledge, thus allowing a deeper understanding of the cell processes involved. In our analysis we used specific network features (degree sequence, subnetwork structure and distance between gene profiles) to obtain informations at different biological scales, providing a novel point of view for the integration of experimental transcriptomic data and a priori biological knowledge, but the entropy measure can also highlight other aspects of the biological systems studied depending on the constraints introduced in the model (e.g. community structures)
A Crucial Test for Color-Octet Production Mechanism in Z^0 Decays
The direct production rates of -wave charmonia in the decays of is
evaluated. The color-octet production processes are shown to have distinctively large branching ratios, the same order
of magnitude as that of prodution, as compared with other -wave
charmonium production mechanisms. This may suggest a crucial channel to test
the color-octet mechanism as well as to observe the -wave charmonium states
in decays. In addition, a signal for the charmonium as strong as
or with large transverse momentum at the Tevatron should
also be observed.Comment: 14 pages in LaTex (3 figures in PS-file
Gluon fragmentation to ^3D_J quarkonia
We present a calculation of the leading order QCD fragmentation functions for
gluons to split into spin-triplet D-wave quarkonia. We apply them to evaluate
the gluon fragmentation contributions to inclusive ^3D_J quarkonium production
at large transverse momentum processes like the Tevatron and find that the
D-wave quarkonia, especially the charmonium 2^{--} state, could be observed
through color-octet mechanism with present luminosity. Since there are
distinctively large gaps between the contributions of two different (i.e,
color-singlet and color-octet) quarkonium production mechanisms, our results
may stand as a unique test to NRQCD color-octet quarkonium production
mechanism.Comment: 15 pages in LaTex (2 figures in PS-file
Precision measurements of the total and partial widths of the psi(2S) charmonium meson with a new complementary-scan technique in antiproton-proton annihilations
We present new precision measurements of the psi(2S) total and partial widths
from excitation curves obtained in antiproton-proton annihilations by Fermilab
experiment E835 at the Antiproton Accumulator in the year 2000. A new technique
of complementary scans was developed to study narrow resonances with
stochastically cooled antiproton beams. The technique relies on precise
revolution-frequency and orbit-length measurements, while making the analysis
of the excitation curve almost independent of machine lattice parameters. We
study the psi(2S) meson through the processes pbar p -> e+ e- and pbar p ->
J/psi + X -> e+ e- + X. We measure the width to be Gamma = 290 +- 25(sta) +-
4(sys) keV and the combination of partial widths Gamma_e+e- * Gamma_pbarp /
Gamma = 579 +- 38(sta) +- 36(sys) meV, which represent the most precise
measurements to date.Comment: 17 pages, 3 figures, 3 tables. Final manuscript accepted for
publication in Phys. Lett. B. Parts of the text slightly expanded or
rearranged; results are unchange
Measurement of the branching ratio of the decay
From the 2002 data taking with a neutral kaon beam extracted from the
CERN-SPS, the NA48/1 experiment observed 97 candidates with a background contamination of events.
From this sample, the BR() is measured to be
The physics of spreading processes in multilayer networks
The study of networks plays a crucial role in investigating the structure,
dynamics, and function of a wide variety of complex systems in myriad
disciplines. Despite the success of traditional network analysis, standard
networks provide a limited representation of complex systems, which often
include different types of relationships (i.e., "multiplexity") among their
constituent components and/or multiple interacting subsystems. Such structural
complexity has a significant effect on both dynamics and function. Throwing
away or aggregating available structural information can generate misleading
results and be a major obstacle towards attempts to understand complex systems.
The recent "multilayer" approach for modeling networked systems explicitly
allows the incorporation of multiplexity and other features of realistic
systems. On one hand, it allows one to couple different structural
relationships by encoding them in a convenient mathematical object. On the
other hand, it also allows one to couple different dynamical processes on top
of such interconnected structures. The resulting framework plays a crucial role
in helping achieve a thorough, accurate understanding of complex systems. The
study of multilayer networks has also revealed new physical phenomena that
remain hidden when using ordinary graphs, the traditional network
representation. Here we survey progress towards attaining a deeper
understanding of spreading processes on multilayer networks, and we highlight
some of the physical phenomena related to spreading processes that emerge from
multilayer structure.Comment: 25 pages, 4 figure
Interference Study of the chi_c0 (1^3P_0) in the Reaction Proton-Antiproton -> pi^0 pi^0
Fermilab experiment E835 has observed proton-antiproton annihilation
production of the charmonium state chi_c0 and its subsequent decay into pi^0
pi^0. Although the resonant amplitude is an order of magnitude smaller than
that of the non-resonant continuum production of pi^0 pi^0, an enhanced
interference signal is evident. A partial wave expansion is used to extract
physics parameters. The amplitudes J=0 and 2, of comparable strength, dominate
the expansion. Both are accessed by L=1 in the entrance proton-antiproton
channel. The product of the input and output branching fractions is determined
to be B(pbar p -> chi_c0) x B(chi_c0 -> pi^0 pi^0)= (5.09 +- 0.81 +- 0.25) x
10^-7.Comment: 4 pages, 4 figures, Accepted by PRL (July 2003
Editorial: Patient-Centered Infertility Care: Current Research and Future Perspectives on Psychosocial, Relational, and Communication Aspects
- …
