37 research outputs found

    Directed transport born from chaos in asymmetric antidot structures

    Full text link
    It is shown that a polarized microwave radiation creates directed transport in an asymmetric antidot superlattice in a two dimensional electron gas. A numerical method is developed that allows to establish the dependence of this ratchet effect on several parameters relevant for real experimental studies. It is applied to the concrete case of a semidisk Galton board where the electron dynamics is chaotic in the absence of microwave driving. The obtained results show that high currents can be reached at a relatively low microwave power. This effect opens new possibilities for microwave control of transport in asymmetric superlattices.Comment: 8 pages, 10 figure

    Transport and dynamical properties of inertial ratchets

    Full text link
    In this paper we discuss the dynamics and transport properties of a massive particle, in a time dependent periodic potential of the ratchet type, with a dissipative environment. The directional currents and characteristics of the motion are studied as the specific frictional coefficient varies, finding that the stationary regime is strongly dependent on this parameter. The maximal Lyapunov exponent and the current show large fluctuations and inversions, therefore for some range of the control parameter, this inertial ratchet could originate a mass separation device. Also an exploration of the effect of a random force on the system is performed.Comment: PDF, 16 pages, 7 figure

    Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance

    Full text link
    We theoretically study the influence of the noise strength on the excitation of the Brillouin propagation modes in a dissipative optical lattice. We show that the excitation has a resonant behavior for a specific amount of noise corresponding to the precise synchronization of the Hamiltonian motion on the optical potential surfaces and the dissipative effects associated with optical pumping in the lattice. This corresponds to the phenomenon of stochastic resonance. Our results are obtained by numerical simulations and correspond to the analysis of microscopic quantities (atomic spatial distributions) as well as macroscopic quantities (enhancement of spatial diffusion and pump-probe spectra). We also present a simple analytical model in excellent agreement with the simulations

    Photogalvanic current in artificial asymmetric nanostructures

    Full text link
    We develop a theoretic description of the photogalvanic current induced by a high frequency radiation in asymmetric nanostructures and show that it describes well the results of numerical simulations. Our studies allow to understand the origin of the electronic ratchet transport in such systems and show that they can be used for creation of new types of detectors operating at room temperature in a terahertz radiation range.Comment: 11 pages, 9 figs, EPJ latex styl

    Characterisation of a three-dimensional Brownian motor in optical lattices

    Full text link
    We present here a detailed study of the behaviour of a three dimensional Brownian motor based on cold atoms in a double optical lattice [P. Sjolund et al., Phys. Rev. Lett. 96, 190602 (2006)]. This includes both experiments and numerical simulations of a Brownian particle. The potentials used are spatially and temporally symmetric, but combined spatiotemporal symmetry is broken by phase shifts and asymmetric transfer rates between potentials. The diffusion of atoms in the optical lattices is rectified and controlled both in direction and speed along three dimensions. We explore a large range of experimental parameters, where irradiances and detunings of the optical lattice lights are varied within the dissipative regime. Induced drift velocities in the order of one atomic recoil velocity have been achieved.Comment: 8 pages, 14 figure

    Brillouin propagation modes in optical lattices: Interpretation in terms of nonconventional stochastic resonance

    Get PDF
    We report the first direct observation of Brillouin-like propagation modes in a dissipative periodic optical lattice. This has been done by observing a resonant behavior of the spatial diffusion coefficient in the direction corresponding to the propagation mode with the phase velocity of the moving intensity modulation used to excite these propagation modes. Furthermore, we show theoretically that the amplitude of the Brillouin mode is a nonmonotonic function of the strength of the noise corresponding to the optical pumping, and discuss this behavior in terms of nonconventional stochastic resonance

    Molecular motor that never steps backwards

    Full text link
    We investigate the dynamics of a classical particle in a one-dimensional two-wave potential composed of two periodic potentials, that are time-independent and of the same amplitude and periodicity. One of the periodic potentials is externally driven and performs a translational motion with respect to the other. It is shown that if one of the potentials is of the ratchet type, translation of the potential in a given direction leads to motion of the particle in the same direction, whereas translation in the opposite direction leaves the particle localized at its original location. Moreover, even if the translation is random, but still has a finite velocity, an efficient directed transport of the particle occurs.Comment: 4 pages, 5 figures, Phys. Rev. Lett. (in print

    Rectification and Phase Locking for Particles on Two Dimensional Periodic Substrates

    Full text link
    We show that a novel rectification phenomena is possible for overdamped particles interacting with a 2D periodic substrate and driven with a longitudinal DC drive and a circular AC drive. As a function of DC amplitude, the longitudinal velocity increases in a series of quantized steps with transverse rectification occuring near these transitions. We present a simple model that captures the quantization and rectification behaviors.Comment: 4 pages, 4 postscript figure

    Disorder Induced Diffusive Transport In Ratchets

    Full text link
    The effects of quenched disorder on the overdamped motion of a driven particle on a periodic, asymmetric potential is studied. While for the unperturbed potential the transport is due to a regular drift, the quenched disorder induces a significant additional chaotic ``diffusive'' motion. The spatio-temporal evolution of the statistical ensemble is well described by a Gaussian distribution, implying a chaotic transport in the presence of quenched disorder.Comment: 10 pages, 4 EPS figures; submitted to Phys. Rev. Letter

    Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations

    Full text link
    The efficiency of a Brownian particle moving in periodic potential in the presence of asymmetric unbiased fluctuations is investigated. We found that there is a regime where the efficiency can be a peaked function of temperature, which proves that thermal fluctuations facilitate the efficiency of energy transformation, contradicting the earlier findings (H. kamegawa et al. Phys. Rev. Lett. 80 (1998) 5251). It is also found that the mutual interplay between asymmetry of fluctuation and asymmetry of the potential may induce optimized efficiency at finite temperature. The ratchet is not most efficiency when it gives maximum current.Comment: 10 pages, 7 figure
    corecore