1,020 research outputs found
A unified analysis of the reactor neutrino program towards the measurement of the theta_13 mixing angle
28 pages, 7 figures, 14 tables, one appendix.International audienceWe present in this article a detailed quantitative discussion of the measurement of the leptonic mixing angle theta_13 through currently scheduled reactor neutrino oscillation experiments. We thus focus on Double Chooz (Phase I & II), Daya Bay (Phase I & II) and RENO experiments. We perform a unified analysis, including systematics, backgrounds and accurate experimental setup in each case. Each identified systematic error and background impact has been assessed on experimental setups following published data when available and extrapolating from Double~Chooz acquired knowledge otherwise. After reviewing the experiments, we present a new analysis of their sensitivities to sin^2(2 theta_13) and study the impact of the different systematics based on the pulls approach. Through this generic statistical analysis we discuss the advantages and drawbacks of each experimental setup
A proposed search for a fourth neutrino with a PBq antineutrino source
Several observed anomalies in neutrino oscillation data can be explained by a
hypothetical fourth neutrino separated from the three standard neutrinos by a
squared mass difference of a few eV^2. We show that this hypothesis can be
tested with a PBq (ten kilocurie scale) 144Ce or 106Ru antineutrino beta-source
deployed at the center of a large low background liquid scintillator detector.
In particular, the compact size of such a source could yield an
energy-dependent oscillating pattern in event spatial distribution that would
unabiguously determine neutrino mass differences and mixing angles.Comment: 4 pages ; 1 table ; 4 figures - Add energy spectrum shape only
analysis + referee comments/suggestion
Nouveautés radiologiques dans le dépistage et le diagnostic des erreurs innées du métabolisme
Les maladies héréditaires du métabolisme ont acquis une place de plus en plus importante dans la pathologie pédiatrique. Leur nombre ne cesse d’augmenter au fur et à mesure de la progression des connaissances en biologie cellulaire et des progrès techniques d’investigation. Nous traiterons ici de trois maladies métaboliques que l’imagerie fonctionnelle et la spectroscopie IRM ont permis d’identifier. Il s’agit des déficits en créatine traitables par l’administration de créatine et les défauts du métabolisme des polyols qui ouvrent le champ sur de nouveaux déficits enzymatiques responsables de présentations cliniques très variées. Nous aborderons également les hyperinsulinismes du jeune enfant dont le diagnostic et la prise en charge ont été récemment transformées par l’utilisation de la [18F]-fluoro-L-DOPA en tomographie par émission de positons.New metabolic diseases are regularly identified by a genetic or biochemical approach. Indeed, the metabolic diseases result from an enzymatic block with accumulation of a metabolite upstream to the block and deficit of a metabolite downstream. The characterization of these abnormal metabolites by MRI spectroscopy permitted to identify the deficient enzyme in two new groups of diseases, creatine deficiencies and polyol anomalies. Creatine deficiency is implicated in unspecific mental retardation. A low peak of creatine at MRI spectroscopy is evocating of creatine deficiency which is treatable by creatine administration. Deficiency of synthesis of polyols, metabolites on the pentose pathway, represent new described metabolic diseases with variable symptoms including a neurological distress, liver disease, splenomegaly, cutis laxa and renal insufficiency. The deficit of ribose-5-phosphate isomerase, one of the enzymes whose diagnosis is evoked in front of the accumulation of ribitol, arabitol and xylitol leads to a leucodystrophy in adults. This new deficit was highlighted by the identification of an abnormal peak in cerebral MRI-spectroscopy corresponding to the abnormal accumulation of polyols in brain. Congenital hyperinsulinism (HI) is characterized by profound hypoglycaemia related to inappropriate insulin secretion. Focal and diffuse forms of hyperinsulinism share a similar clinical presentation but their treatment is dramatically different. Until recently, preoperative differential diagnosis was based on pancreatic venous sampling, an invasive and technically demanding technique. Positron emission tomography (PET) after injection of [18F]Fluoro-L-DOPA has been evaluated for the preoperative differentiation between focal and diffuse HI, by imaging uptake of radiotracer and the conversion of [18F]Fluoro-L-DOPA into dopamine by DOPA decarboxylase. PET with [18F]Fluoro-L-DOPA has been validated as a reliable test to differentiate diffuse and focal HI and is now a major differential diagnosis tool in infantile hyperinsulinemic hypoglycaemia
Phenomenology of Quantum Gravity and its Possible Role in Neutrino Anomalies
New phenomenological models of Quantum Gravity have suggested that a
Lorentz-Invariant discrete spacetime structure may become manifest through a
nonstandard coupling of matter fields and spacetime curvature. On the other
hand, there is strong experimental evidence suggesting that neutrino
oscillations cannot be described by simply considering neutrinos as massive
particles. In this manuscript we motivate and construct one particular
phenomenological model of Quantum Gravity that could account for the so-called
neutrino anomalies.Comment: For the proceedings of "Relativity and Gravitation: 100 Years after
Einstein in Prague" (June 2012, Prague
Reactor monitoring and safeguards using antineutrino detectors
Nuclear reactors have served as the antineutrino source for many fundamental
physics experiments. The techniques developed by these experiments make it
possible to use these very weakly interacting particles for a practical
purpose. The large flux of antineutrinos that leaves a reactor carries
information about two quantities of interest for safeguards: the reactor power
and fissile inventory. Measurements made with antineutrino detectors could
therefore offer an alternative means for verifying the power history and
fissile inventory of a reactors, as part of International Atomic Energy Agency
(IAEA) and other reactor safeguards regimes. Several efforts to develop this
monitoring technique are underway across the globe.Comment: 6 pages, 4 figures, Proceedings of XXIII International Conference on
Neutrino Physics and Astrophysics (Neutrino 2008); v2: minor additions to
reference
Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters
We present the results of a global neutrino oscillation data analysis within
the three-flavour framework. We include latest results from the MINOS
long-baseline experiment (including electron neutrino appearance as well as
anti-neutrino data), updating all relevant solar (SK II+III), atmospheric (SK
I+II+III) and reactor (KamLAND) data. Furthermore, we include a recent
re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These
results have important consequences for the analysis of reactor experiments and
in particular for the status of the mixing angle . In our
recommended default analysis we find from the global fit that the hint for
non-zero remains weak, at 1.8 for both neutrino mass
hierarchy schemes. However, we discuss in detail the dependence of these
results on assumptions concerning the reactor neutrino analysis.Comment: 15 pages, 10 figures and 2 tables, v2: corrected version, main
conclusions unchanged, references adde
- …
