3,370 research outputs found

    Rheological behaviour and spectroscopic investigations of cerium-modified AlO(OH)colloidal suspensions

    Get PDF
    The rheological behaviour of aqueous suspensions of boehmite (AlO(OH)) modified with different Ce-salts (Ce(NO3)3, CeCl3, Ce(CH3COO)3 and Ce2(SO4)3) was investigated at a fixed Ce/Al molar ratio (0.05). Freshly prepared boehmite suspensions were near-Newtonian and time-independent. A shear-sensitive thixotropic network developed when Ce-salts with monovalent anions were introduced in the nanoparticle sols. The extent of particle aggregation dramatically increased with ageing for Ce(NO3)3 and CeCl3 whereas an equilibrium value was reached with Ce(CH3COO)3. The addition of Ce2(SO4)3 with divalent anions involved no thixotropy but rather a sudden phase separation. The combined data set of IRTF and DRIFT spectra indicated that free View the MathML source anions of peptized boehmite adsorb on the nanoparticle surface by H-bond. The introduction of Ce-salts in the boehmite sol led to the coordination between Ce3+ ions and View the MathML source anions adsorbed on boehmite i.e. to [Ce(NO3)4(H2O)x]− complex. Such coordination led to a thixotropic behaviour which was lower with Ce(NO3)3 compared to CeCl3 and Ce(CH3COO)3. In contrast, Ce2(SO4)3 formed insoluble complexes with dissolved aluminium species. The formation of H-bonded surface nitrate complexes was found to play a decisive role on the particle–particle interactions and consequently on the rheological behaviour of the sols

    The biased evolution of generation time

    Full text link
    Many life-history traits, like the age at maturity or adult longevity, are important determinants of the generation time. For instance, semelparous species whose adults reproduce once and die have shorter generation times than iteroparous species that reproduce on several occasions. A shorter generation time ensures a higher growth rate in stable environments where resources are in excess, and is therefore a positively selected feature in this (rarely met) situation. In a stable and limiting environment, all combination of traits (or strategies) that produce the same number of viable offspring on average are strictly neutral even when their generation times differ. We first study the evolution of life-history strategies with different generation times in this context, and show that those with the longest generation time represent the most likely evolutionary outcomes. Indeed, strategies with longer generation times generate fewer mutants per time unit, which makes them less likely to be replaced within a given time period. This `turnover bias' inevitably exists and favors the evolution of strategies with long generation times. Its real impact, however, should depend on the strength and direction of other evolutionary forces; selection for short generation times, for instance, may oppose turnover bias. Likewise, the evolutionary outcome depends on the strength of such selection and population size, comparably to other biases acting on the occurrence of mutations.Comment: Now we also study the evolution of development duration, suggesting that turnover bias is involved in the evolutionary dynamics of any trait linked with the generation tim

    Electrophoretic silica-coating process on a nano-structured copper electrode

    Get PDF
    A method for silica-coating at the nanoscale by electrophoretic deposition is presented here, using raw or grafted silica dispersions

    ORSTOM : 40 ans de recherche océanique

    Get PDF

    The evolved circumbinary disk of AC Her: a radiative transfer, interferometric and mineralogical study

    Get PDF
    We aim to constrain the structure of the circumstellar material around the post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial distribution of the amorphous as well as of the crystalline dust. We present very high-quality mid-IR interferometric data that were obtained with MIDI/VLTI. We analyse the MIDI data and the full SED, using the MCMax radiative transfer code, to find a good structure model of AC Her's circumbinary disk. We include a grain size distribution and midplane settling of dust self-consistently. The spatial distribution of crystalline forsterite in the disk is investigated with the mid-IR features, the 69~μ\mum band and the 11.3~μ\mum signatures in the interferometric data. All the data are well fitted. The inclination and position angle of the disk are well determined at i=50+-8 and PA=305+-10. We firmly establish that the inner disk radius is about an order of magnitude larger than the dust sublimation radius. Significant grain growth has occurred, with mm-sized grains being settled to the midplane of the disk. A large dust mass is needed to fit the sub-mm fluxes. By assuming {\alpha}=0.01, a good fit is obtained with a small grain size power law index of 3.25, combined with a small gas/dust ratio <10. The resulting gas mass is compatible with recent estimates employing direct gas diagnostics. The spatial distribution of the forsterite is different from the amorphous dust, as more warm forsterite is needed in the surface layers of the inner disk. The disk in AC Her is very evolved, with its small gas/dust ratio and large inner hole. Mid-IR interferometry offers unique constraints, complementary to mid-IR features, for studying the mineralogy in disks. A better uv coverage is needed to constrain in detail the distribution of the crystalline forsterite in AC Her, but we find strong similarities with the protoplanetary disk HD100546.Comment: update with final version published in A&

    Bulk or surface grafted silylated Ru(ii) complexes on silica as luminescent nanomaterials

    Get PDF
    A series of Ru(II) complexes with monosilylated-dipyridine ligand have been synthesized and fully characterized and were then covalently attached to silica nanoparticles. Two types of hybrids were obtained depending on the experimental procedure. In the first approach, metal complexes were incorporated inside the silica nanoparticles leaving a free hydroxylated silica surface for further functionalization. These silica based nanohybrids are similar to the well known nanoparticles encapsulating [Ru(bpy)3]2+ complexes preventing the release of the dye when used in aqueous or organic solutions. Size and luminescence properties vary throughout the series of metal complexes. The second approach leads to ruthenium(II) complexes covalently attached to the silica nanoparticle surface via hydrolysis and condensation of the ethoxysilyl group with silanol sites of Ludox type silica nanoparticles. This leads to the grafting of a monolayer for complexes with the monoethoxysilyl dipyridine ligand. In contrast, the complexes with triethoxysilyl ligands can lead to small amounts of oligomers, but their quantity is limited by the sterical constraints imposed by the molecular structure. The size of the hybrids depends on the starting particles. 29Si and 13C solid state NMR are used to characterize silica surface properties whereas TEM and SEM confirm nanosize and morphology of the hybrids. The complexes and the nanohybrids are luminescent, with variations for ruthenium(II) complexes that are covalently incorporated or grafted on the silica surfac

    Les matières picturales de la grotte d'Ekain (Pays Basque)

    Get PDF

    An efficient route to aqueous phase synthesis of nanocrystalline γ-Al2O3 with high porosity: From stable boehmite colloids to large pore mesoporous alumina

    Get PDF
    In this paper we emphasise the important role of Pluronic F127 on the porosity of mesoporous alumina prepared from boehmite colloids. By focusing on the F127/boehmite interactions we show how the concepts of interface science may help to predict and improve the textural characteristics of mesoporous alumina. By varying the synthetic parameters, in particular the copolymer content, we show that the porosity of c-Al2O3 can be enhanced by 400% and the average pore diameter can be expanded from 5 to 14 nm. These results are discussed in terms of interactions between the Pluronic F127 and boehmite colloids, and are correlated to the critical micelle concentration (CMC) of the copolymer. The textural characteristics of the mesoporous alumina can be further improved either by introducing hydrocarbons in the preformed boehmite/copolymer sols or by concentrating the sols. In comparison with as-synthesised alumina, those prepared with F127 showed improved thermal stability. Furthermore, boehmite/copolymer sols were stable for all surfactant concentrations investigated and can give high quality coatings suitable for catalytic applications

    Comparison of fringe-tracking algorithms for single-mode near-infrared long-baseline interferometers

    Full text link
    To enable optical long baseline interferometry toward faint objects, long integrations are necessary despite atmospheric turbulence. Fringe trackers are needed to stabilize the fringes and thus increase the fringe visibility and phase signal-to-noise ratio (SNR), with efficient controllers robust to instrumental vibrations, and to subsequent path fluctuations and flux drop-outs. We report on simulations, analysis and comparison of the performances of a classical integrator controller and of a Kalman controller, both optimized to track fringes under realistic observing conditions for different source magnitudes, disturbance conditions, and sampling frequencies. The key parameters of our simulations (instrument photometric performance, detection noise, turbulence and vibrations statistics) are based on typical observing conditions at the Very Large Telescope observatory and on the design of the GRAVITY instrument, a 4-telescope single-mode long baseline interferometer in the near-infrared, next in line to be installed at VLT Interferometer. We find that both controller performances follow a two-regime law with the star magnitude, a constant disturbance limited regime, and a diverging detector and photon noise limited regime. Moreover, we find that the Kalman controller is optimal in the high and medium SNR regime due to its predictive commands based on an accurate disturbance model. In the low SNR regime, the model is not accurate enough to be more robust than an integrator controller. Identifying the disturbances from high SNR measurements improves the Kalman performances in case of strong optical path difference disturbances.Comment: Accepted for publication in A&A. 17 pages 15 figure

    An interferometric study of the post-AGB binary 89 Herculis. II Radiative transfer models of the circumbinary disk

    Get PDF
    The presence of disks and outflows is widespread among post-AGB binaries. In the first paper of this series, a surprisingly large fraction of optical light was found to be resolved in the 89 Her post-AGB system. The data showed this flux to arise from close to the central binary. Scattering off the inner rim of the circumbinary disk, or in a dusty outflow were suggested as two possible origins. With detailed dust radiative transfer models of the disk we aim to discriminate between these two configurations. By including Herschel/SPIRE photometry, we extend the SED such that it now fully covers UV to sub-mm wavelengths. The MCMax radiative transfer code is used to create a large grid of disk models. Our models include a self-consistent treatment of dust settling as well as of scattering. A Si-rich composition with two additional opacity sources, metallic Fe or amorphous C, are tested. The SED is fit together with mid-IR (MIDI) visibilities as well as the optical and near-IR visibilities of Paper I, to constrain the structure of the disk and in particular of its inner rim. The near-IR visibility data require a smooth inner rim, here obtained with a two-power-law parameterization of the radial surface density distribution. A model can be found that fits all the IR photometric and interferometric data well, with either of the two continuum opacity sources. Our best-fit passive models are characterized by a significant amount of mm-sized grains, which are settled to the midplane of the disk. Not a single disk model fits our data at optical wavelengths though, the reason being the opposing constraints imposed by the optical and near-IR interferometric data. A geometry in which a passive, dusty, and puffed-up circumbinary disk is present, can reproduce all the IR but not the optical observations of 89 Her. Another dusty, outflow or halo, component therefore needs to be added to the system.Comment: 15 pages, in pres
    corecore