741 research outputs found
Synthesis of estrogens in progenitor cells of adult fish brain: Evolutive novelty or exaggeration of a more general mechanism implicating estrogens in neurogenesis?
International audienceIn contrast to other vertebrates, in which the adult brain shows limited adult neurogenesis, teleost fishes exhibit an unparalleled capacity to generate new neurons as adults, suggesting that their brains present a highly permissive environment for the maintenance and proliferation of adult progenitors. Here, we examine the hypothesis that one of the factors permitting establishment of this favourable environment is estradiol. Indeed, recent data showed that radial glial cells strongly expressed one of two aromatase duplicated genes. Aromatase is the estrogen-synthesizing enzyme and this observation is of great interest, given that radial glial cells are progenitor cells capable of generating new neurons. Given the well-documented roles of estrogens on cell fate, and notably on cell proliferation, these data suggest that estradiol could be involved in maintaining and/or activating these progenitors. Examination of recent data in birds and mammals suggests that the situation in fish could well be an exaggeration of a more general mechanism implicating estrogens in neurogenesis. Indeed, there is accumulating evidence that estrogens are involved in embryonic, adult or reparative neurogenesis in other vertebrates, notably in mammals
Fiscal rule and shock amplification : A stochastic endogenous growth model
This paper develops a discrete-time stochastic endogenous growth model to study the amplification role of fiscal rules. In our model, transitory shocks exert permanent effects on the level of variables in equilibrium (hysteresis), and can be strongly amplified by the public debt adjustment, leading to a procyclical amplification mechanism (the "public debt accelerator"). This procyclical stance depends on the speed of adjustment of the debt-to-GDP ratio under a fixed-fiscal rule. A cold turkey strategy removes the public debt shock, but at the risk of destabilizing other variables, while a gradualist strategy has a stabilization effect, with detrimental consequences in the long-run. Finally, we show that a flexible-fiscal rule helps smooth aggregate variables by limiting the cuts in productive public spending
Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc
International audienceThe present study was conducted to assess the effects of Cd exposure on estrogen signaling in the zebrafish brain, as well as the potential protective role of Zn against Cd-induced toxicity. For this purpose, the effects on transcriptional activation of the estrogen receptors (ERs), aromatase B (Aro-B) protein expression and molecular expression of related genes were examined in vivo using wild-type and transgenic zebrafish embryos. For in vitro studies, an ER-negative glial cell line (U251MG) transfected with different zebrafish ER subtypes (ERα, ERβ1 and ERβ2) was also used. Embryos were exposed either to estradiol (E2), Cd, E2+Cd or E2+Cd+Zn for 72 h and cells were exposed to the same treatments for 30 h. Our results show that E2 treatment promoted the transcriptional activation of ERs and increased Aro-B expression, at both the protein and mRNA levels. Although exposure to Cd, does not affect the studied parameters when administered alone, it significantly abolished the E2-stimulated transcriptional response of the reporter gene for the three ER subtypes in U251-MG cells, and clearly inhibited the E2 induction of Aro-B in radial glial cells of zebrafish embryos. These inhibitory effects were accompanied by a significant downregulation of the expression of esr1, esr2a, esr2b and cyp19a1b genes compared to the E2-treated group used as a positive control. Zn administration during simultaneous exposure to E2 and Cd strongly stimulated zebrafish ERs transactivation and increased Aro-B protein expression, whereas mRNA levels of the three ERs as well as the cyp19a1b remained unchanged in comparison with Cd-treated embryos. In conclusion, our results clearly demonstrate that Cd acts as a potent anti-estrogen in vivo and in vitro, and that Cd-induced E2 antagonism can be reversed, at the protein level, by Zn supplement
Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule.
International audienc
Molecular Characterization of the Gastrula in the Turtle Emys orbicularis: An Evolutionary Perspective on Gastrulation
Due to the presence of a blastopore as in amphibians, the turtle has been suggested to exemplify a transition form from an amphibian- to an avian-type gastrulation pattern. In order to test this hypothesis and gain insight into the emergence of the unique characteristics of amniotes during gastrulation, we have performed the first molecular characterization of the gastrula in a reptile, the turtle Emys orbicularis. The study of Brachyury, Lim1, Otx2 and Otx5 expression patterns points to a highly conserved dynamic of expression with amniote model organisms and makes it possible to identify the site of mesoderm internalization, which is a long-standing issue in reptiles. Analysis of Brachyury expression also highlights the presence of two distinct phases, less easily recognizable in model organisms and respectively characterized by an early ring-shaped and a later bilateral symmetrical territory. Systematic comparisons with tetrapod model organisms lead to new insights into the relationships of the blastopore/blastoporal plate system shared by all reptiles, with the blastopore of amphibians and the primitive streak of birds and mammals. The biphasic Brachyury expression pattern is also consistent with recent models of emergence of bilateral symmetry, which raises the question of its evolutionary significance
Vieillissement physiologique et pathologique du contrôle nerveux de la respiration (étude chez des souris sauvages et transgéniques)
De nouveaux enjeux émergent dans le domaine de la Santé en raison du vieillissement de la population et du développement inquiétant de la Maladie d Alzheimer (MA). Chez le sujet sain ou pathologique, peu d études ont porté sur le vieillissement du contrôle nerveux de la respiration, en dépit de son rôle crucial pour l oxygénation du cerveau. Cette thèse présente des recherches translationnelles, réalisées chez la souris, pour étudier le vieillissement physiologique et pathologique du contrôle nerveux de la respiration. Chez des souris transgéniques, modèles reconnus de la MA et du syndrome de Rett, nous décrivons le développement de neuropathologies respiratoires graves, conduisant à un décès prématuré. Nous montrons pour la première fois qu une tauopathie du tronc cérébral altère le fonctionnement des voies aériennes supérieures, la vocalisation et la respiration. De plus, nos travaux suggèrent un rôle délétère de l anesthésie pour la MA et identifient des pistes thérapeutiques nouvelles. En conclusion, nos travaux chez la souris peuvent avoir des retombées particulièrement intéressantes notamment pour la MA.New issues are emerging in the field of Health care due to ageing of the population and the alarming development of Alzheimer s Disease (AD). In healthy or pathological living being, very few studies are dealing with the ageing of the respiratory nervous control, in spite of the crucial role of respiration for brain oxygenation. This thesis presents translational research performed in mice to examine the physiological and pathological ageing of the respiratory nervous control. In mice from two transgenic strains, recognized models for AD and Rett syndrome, we describe the development of drastic respiratory neuropathologies leading to premature death. In the AD mouse model, we show for the first time that brainstem tauopathy triggers dysfunctions of the upper airways, impairs vocalization and alters respiration and respiratory control. In addition, our work suggests a deleterious effect of anaesthesia for AD and identifies new therapeutic strategies. This mouse research could well contribute to significant improvements in AD care.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF
Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina.
The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1
Towards a synthetic view of axis specification mechanisms in vertebrates: insights from the dogfish
Fluoxetine treatment abolishes the in vitro respiratory response to acidosis in neonatal mice
International audienceBACKGROUND: To secure pH homeostasis, the central respiratory network must permanently adapt its rhythmic motor drive to environment and behaviour. In neonates, it is commonly admitted that the retrotrapezoid/parafacial respiratory group of neurons of the ventral medulla plays the primary role in the respiratory response to acidosis, although the serotonergic system may also contribute to this response.METHODOLOGY/PRINCIPAL FINDINGS: Using en bloc medullary preparations from neonatal mice, we have shown for the first time that the respiratory response to acidosis is abolished after pre-treatment with the serotonin-transporter blocker fluoxetine (25-50 µM, 20 min), a commonly used antidepressant. Using mRNA in situ hybridization and immunohistology, we have also shown the expression of the serotonin transporter mRNA and serotonin-containing neurons in the vicinity of the RTN/pFRG of neonatal mice.CONCLUSIONS: These results reveal that the serotonergic system plays a pivotal role in pH homeostasis. Although obtained in vitro in neonatal mice, they suggest that drugs targeting the serotonergic system should be used with caution in infants, pregnant women and breastfeeding mothers
- …
