64 research outputs found
Nucleotide Sequence of an Arabidopsis thaliana Turgor-Responsive TMP-B cDNA Clone Encoding Transmembrane Protein with a Major Intrinsic Protein Motif
Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE
Perturbation and time-course data sets, in combination with computational approaches, can be used to infer transcriptional regulatory networks which ultimately govern the developmental pathways and responses of cells. Here, we individually knocked down the four transcription factors PU.1, IRF8, MYB and SP1 in the human monocyte leukemia THP-1 cell line and profiled the genome-wide transcriptional response of individual transcription starting sites using deep sequencing based Cap Analysis of Gene Expression. From the proximal promoter regions of the responding transcription starting sites, we derived de novo binding-site motifs, characterized their biological function and constructed a network. We found a previously described composite motif for PU.1 and IRF8 that explains the overlapping set of transcriptional responses upon knockdown of either factor
Cloning the interferon regulatory factor 1 gene in lungfish (Protopterus annectens) and its molecular evolution among sarcopterygians
Physiological evidence for diversification of IFNα- and IFNβ-mediated response programs in different autoimmune diseases
Interactions with Commensal and Pathogenic Bacteria Induce HIV-1 Latency in Macrophages through Altered Transcription Factor Recruitment to the Long Terminal Repeat
Induction of Samhd1 by interferon gamma and lipopolysaccharide in murine macrophages requires IRF1
IFN-Stimulated Gene 15 Is Synergistically Activated Through Interactions Between the Myelocyte/Lymphocyte-Specific Transcription Factors, PU.1, IFN Regulatory Factor-8/IFN Consensus Sequence Binding Protein, and IFN Regulatory Factor-4: Characterization of a New Subtype of IFN-Stimulated Response Element
IFN-β: A Contentious Player in Host–Pathogen Interaction in Tuberculosis
Tuberculosis (TB) is a major health threat to the human population worldwide. The etiology of the disease is Mycobacterium tuberculosis (Mtb), a highly successful intracellular pathogen. It has the ability to manipulate the host immune response and to make the intracellular environment suitable for its survival. Many studies have addressed the interactions between the bacteria and the host immune cells as involving many immune mediators and other cellular players. Interferon-β (IFN-β) signaling is crucial for inducing the host innate immune response and it is an important determinant in the fate of mycobacterial infection. The role of IFN-β in protection against viral infections is well established and has been studied for decades, but its role in mycobacterial infections remains much more complicated and debatable. The involvement of IFN-β in immune evasion mechanisms adopted by Mtb has been an important area of investigation in recent years. These advances have widened our understanding of the pro-bacterial role of IFN-β in host–pathogen interactions. This pro-bacterial activity of IFN-β appears to be correlated with its anti-inflammatory characteristics, primarily by antagonizing the production and function of interleukin 1β (IL-1β) and interleukin 18 (IL-18) through increased interleukin 10 (IL-10) production and by inhibiting the nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome. Furthermore, it also fails to provoke a proper T helper 1 (Th1) response and reduces the expression of major histocompatibility complex II (MHC-II) and interferon-γ receptors (IFNGRs). Here we will review some studies to provide a paradigm for the induction, regulation, and role of IFN-β in mycobacterial infection. Indeed, recent studies suggest that IFN-β plays a role in Mtb survival in host cells and its downregulation may be a useful therapeutic strategy to control Mtb infection
- …
