17,479 research outputs found
Effects of anisotropy in spin molecular-orbital coupling on effective spin models of trinuclear organometallic complexes
We consider layered decorated honeycomb lattices at two-thirds filling, as
realized in some trinuclear organometallic complexes. Localized moments
with a single-spin anisotropy emerge from the interplay of Coulomb repulsion
and spin molecular-orbit coupling (SMOC). Magnetic anisotropies with bond
dependent exchange couplings occur in the honeycomb layers when the direct
intracluster exchange and the spin molecular-orbital coupling are both present.
We find that the effective spin exchange model within the layers is an XXZ +
120 honeycomb quantum compass model. The intrinsic non-spherical
symmetry of the multinuclear complexes leads to very different transverse and
longitudinal spin molecular-orbital couplings, which greatly enhances the
single-spin and exchange coupling anisotropies. The interlayer coupling is
described by a XXZ model with anisotropic biquadratic terms. As the correlation
strength increases the systems becomes increasingly one-dimensional. Thus, if
the ratio of SMOC to the interlayer hopping is small this stabilizes the
Haldane phase. However, as the ratio increases there is a quantum phase
transition to the topologically trivial `-phase'. We also predict a quantum
phase transition from a Haldane phase to a magnetically ordered phase at
sufficiently strong external magnetic fields.Comment: 22 pages, 11 figures. Final version of paper to be published in PRB.
Important corrections to appendix
On an integrable deformation of Kapustin-Witten systems
In this article we study an integrable deformation of the Kapustin-Witten
equations. Using the Weyl-Wigner-Moyal-Groenewold description an integrable
-deformation of a Kapustin-Witten system is obtained. Starting from
known solutions of the original equations, some solutions to these deformed
equations are obtained.Comment: 17 pages, no figure
Dynamical properties of a strongly correlated model for quarter-filled layered organic molecular crystals
The dynamical properties of an extended Hubbard model, which is relevant to
quarter-filled layered organic molecular crystals, are analyzed. We have
computed the dynamical charge correlation function, spectral density, and
optical conductivity using Lanczos diagonalization and large-N techniques. As
the ratio of the nearest-neighbour Coulomb repulsion, V, to the hopping
integral, t, increases there is a transition from a metallic phase to a charge
ordered phase. Dynamical properties close to the ordering transition are found
to differ from the ones expected in a conventional metal. Large-N calculations
display an enhancement of spectral weight at low frequencies as the system is
driven closer to the charge ordering transition in agreement with Lanczos
calculations. As V is increased the charge correlation function displays a
plasmon-like mode which, for wavevectors close to (pi,pi), increases in
amplitude and softens as the charge ordering transition is approached. We
propose that inelastic X-ray scattering be used to detect this mode. Large-N
calculations predict superconductivity with dxy symmetry close to the ordering
transition. We find that this is consistent with Lanczos diagonalization
calculations, on lattices of 20 sites, which find that the binding energy of
two holes becomes negative close to the charge ordering transition.Comment: 22 pages, 16 eps figures; caption of Fig. 5 correcte
Preliminary Results of the Louisiana Sex Offender Treatment Program
The purpose of this study was to offer preliminary support for the Louisiana Sex Offender Treatment Program (LSOTP) in addressing the needs of juvenile sex offenders. Research objectives were (1) to offer statistical evidence for reductions in anxiety, depression, cognitive distortion and negative attitudes towards women comparing a group of 21 adolescents, 12 of whom received services as usual and nine of whom participated in the LSOTP. A controlled experimental evaluation design was utilized. The juvenile sex offenders were randomly assigned to the experimental group for 12 weeks receiving treatment services and a control group receiving care “as usual” in a residential group care program. Participants in the experimental group experienced statistically significant decreases in cognitive distortions related specifically to rape and molestation.The results of this study offer preliminary support of the LSOTP as a best practices alternative to other treatment modalities
Discrete variational integrators and optimal control theory
A geometric derivation of numerical integrators for optimal control problems
is proposed. It is based in the classical technique of generating functions
adapted to the special features of optimal control problems.Comment: 17 page
Non-Fermi liquid behavior in nearly charge ordered layered metals
Non-Fermi liquid behavior is shown to occur in two-dimensional metals which
are close to a charge ordering transition driven by the Coulomb repulsion. A
linear temperature dependence of the scattering rate together with an increase
of the electron effective mass occur above T*, a temperature scale much smaller
than the Fermi temperature. It is shown that the anomalous temperature
dependence of the optical conductivity of the quasi-two-dimensional organic
metal alpha-(BEDT-TTF)2MHg(SCN)4, with M=NH4 and Rb, above T*=50-100 K, agrees
qualitatively with our predictions for the electronic properties of nearly
charge ordered two-dimensional metals.Comment: accepted in Phys. Rev. Let
Geometric numerical integration of nonholonomic systems and optimal control problems
A geometric derivation of numerical integrators for nonholonomic systems and
optimal control problems is obtained. It is based in the classical technique of
generating functions adapted to the special features of nonholonomic systems
and optimal control problems.Comment: 6 pages, 1 figure. Submitted to IFAC Workshop on Lagrangian and
Hamiltonian Methods for Nonlinear Control, Sevilla 200
Solving multi-objective hub location problems by hybrid algorithms
In many logistic, telecommunications and computer networks, direct routing of
commodities between any origin and destination is not viable due to economic and technolog-
ical constraints. In that cases, a network with centralized units, known as hub facilities, and a
small number of links is commonly used to connect any origin-destination pair. The purpose
of these hub facilities is to consolidate, sort and transship e ciently any commodity in the
network. Hub location problems (HLPs) consider the design of these networks by locating a
set of hub facilities, establishing an interhub subnet, and routing the commodities through
the network while optimizing some objective(s) based on the cost or service.
Hub location has evolved into a rich research area, where a huge number of papers have
been published since the seminal work of O'Kelly [1]. Early works were focused on analogue
facility location problems, considering some assumptions to simplify network design. Recent
works [2] have studied more complex models that relax some of these assumptions and in-
corporate additional real-life features. In most HLPs considered in the literature, the input
parameters are assumed to be known and deterministic. However, in practice, this assumption
is unrealistic since there is a high uncertainty on relevant parameters, such as costs, demands
or even distances.
In this work, we will study the multi-objective hub location problems with uncertainty.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
- …
