388 research outputs found
Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter
We present a numerical method, based on a FEM simulation, for the
determination of the gravitational field generated by massive objects, whatever
geometry and space mass density they have. The method was applied for the
determination of the self gravity effect of an absolute cold atom gravimeter
which aims at a relative uncertainty of 10-9. The deduced bias, calculated with
a perturbative treatment, is finally presented. The perturbation reaches (1.3
\pm 0.1) \times 10-9 of the Earth's gravitational field.Comment: 12 pages, 7 figure
Probabilistic analysis of the upwind scheme for transport
We provide a probabilistic analysis of the upwind scheme for
multi-dimensional transport equations. We associate a Markov chain with the
numerical scheme and then obtain a backward representation formula of
Kolmogorov type for the numerical solution. We then understand that the error
induced by the scheme is governed by the fluctuations of the Markov chain
around the characteristics of the flow. We show, in various situations, that
the fluctuations are of diffusive type. As a by-product, we prove that the
scheme is of order 1/2 for an initial datum in BV and of order 1/2-a, for all
a>0, for a Lipschitz continuous initial datum. Our analysis provides a new
interpretation of the numerical diffusion phenomenon
Perturbation of symmetric 3-RPR manipulators and asymptotic singularities
International audienceSmall perturbations can affect the kinematic properties of manipulators with non-generic architecture. We study in this paper the perturbations of symmetric planar 3-RPR manipulators. We show in particular that one can obtain any of the three possible stable types of behaviour of 3-RPR manipulators for large values of the lengths of the legs
A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry
We describe the theory and first experimental work on our concept for
searching on earth for the presence of dark content of the vacuum (DCV) using
atom interferometry. Specifically, we have in mind any DCV that has not yet
been detected on a laboratory scale, but might manifest itself as dark energy
on the cosmological scale. The experimental method uses two atom
interferometers to cancel the effect of earth's gravity and diverse noise
sources. It depends upon two assumptions: first, that the DCV possesses some
space inhomogeneity in density, and second that it exerts a sufficiently strong
non-gravitational force on matter. The motion of the apparatus through the DCV
should then lead to an irregular variation in the detected matter-wave phase
shift. We discuss the nature of this signal and note the problem of
distinguishing it from instrumental noise. We also discuss the relation of our
experiment to what might be learned by studying the noise in gravitational wave
detectors such as LIGO.The paper concludes with a projection that a future
search of this nature might be carried out using an atom interferometer in an
orbiting satellite. The apparatus is now being constructed
Asymptotic singularities of planar parallel 3-RPR manipulators
We study the limits of singularities of planar parallel 3-RPR manipulators as the lengths of their legs tend to infinity, paying special attention to the presence of cusps. These asymptotic singularities govern the kinematic behavior of the manipulator in a rather large portion of its workspace
Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy
Invasive electroencephalograph (EEG) recordings of ten patients suffering
from focal epilepsy were analyzed using the method of renormalized entropy.
Introduced as a complexity measure for the different regimes of a dynamical
system, the feature was tested here for its spatio-temporal behavior in
epileptic seizures. In all patients a decrease of renormalized entropy within
the ictal phase of seizure was found. Furthermore, the strength of this
decrease is monotonically related to the distance of the recording location to
the focus. The results suggest that the method of renormalized entropy is a
useful procedure for clinical applications like seizure detection and
localization of epileptic foci.Comment: 10 pages, 5 figure
Kochen-Specker Vectors
We give a constructive and exhaustive definition of Kochen-Specker (KS)
vectors in a Hilbert space of any dimension as well as of all the remaining
vectors of the space. KS vectors are elements of any set of orthonormal states,
i.e., vectors in n-dim Hilbert space, H^n, n>3 to which it is impossible to
assign 1s and 0s in such a way that no two mutually orthogonal vectors from the
set are both assigned 1 and that not all mutually orthogonal vectors are
assigned 0. Our constructive definition of such KS vectors is based on
algorithms that generate MMP diagrams corresponding to blocks of orthogonal
vectors in R^n, on algorithms that single out those diagrams on which algebraic
0-1 states cannot be defined, and on algorithms that solve nonlinear equations
describing the orthogonalities of the vectors by means of statistically
polynomially complex interval analysis and self-teaching programs. The
algorithms are limited neither by the number of dimensions nor by the number of
vectors. To demonstrate the power of the algorithms, all 4-dim KS vector
systems containing up to 24 vectors were generated and described, all 3-dim
vector systems containing up to 30 vectors were scanned, and several general
properties of KS vectors were found.Comment: 19 pages, 6 figures, title changed, introduction thoroughly
rewritten, n-dim rotation of KS vectors defined, original Kochen-Specker 192
(117) vector system translated into MMP diagram notation with a new graphical
representation, results on Tkadlec's dual diagrams added, several other new
results added, journal version: to be published in J. Phys. A, 38 (2005). Web
page: http://m3k.grad.hr/pavici
Flight determination of the drag and pressure recovery of an NACA 1-40-250 nose inlet at Mach numbers from 0.9 to 1.8
Flight Determination of Drag and Pressure Recovery of a Nose Inlet of Parabolic Profile at Mach Numbers from 0.8 to 1.7
- …
