1,148 research outputs found
Homogenized modeling for vascularized poroelastic materials
A new mathematical model for the macroscopic behavior of a material composed of a poroelastic solid embedding a Newtonian fluid network phase (also referred to as vascularized poroelastic material), with fluid transport between them, is derived via asymptotic homogenization. The typical distance between the vessels/channels (microscale) is much smaller than the average size of a whole domain (macroscale). The homogeneous and isotropic Biot’s equation (in the quasi-static case and in absence of volume forces) for the poroelastic phase and the Stokes’ problem for the fluid network are coupled through a fluid-structure interaction problem which accounts for fluid transport between the two phases; the latter is driven by the pressure difference between the two compartments. The averaging process results in a new system of partial differential equations that formally reads as a double poroelastic, globally mass conserving, model, together with a new constitutive relationship for the whole material which encodes the role of both pore and fluid network pressures. The mathematical model describes the mutual interplay among fluid filling the pores, flow in the network, transport between compartments, and linear elastic deformation of the (potentially compressible) elastic matrix comprising the poroelastic phase. Assuming periodicity at the microscale level, the model is computationally feasible, as it holds on the macroscale only (where the microstructure is smoothed out), and encodes geometrical information on the microvessels in its coefficients, which are to be computed solving classical periodic cell problems. Recently developed double porosity models are recovered when deformations of the elastic matrix are neglected. The new model is relevant to a wide range of applications, such as fluid in porous, fractured rocks, blood transport in vascularized, deformable tumors, and interactions across different hierarchical levels of porosity in the bone
Extension, inflation and torsion of a residually-stressed circular cylindrical tube
In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress
Deformation induced loss of ellipticity in an anisotropic circular cylindrical tube
When a transversely isotropic circular cylindrical tube is subject to axial extension and inflation, the governing equations of equilibrium can lose ellipticity under certain combinations of deformation and direction of transverse isotropy. In this paper, it is shown how the inclusion of an axial shear deformation moderates the loss of ellipticity condition. In particular, this condition is analysed for a material model consisting of an isotropic neo-Hookean matrix within which are embedded fibres whose properties are characterized by the addition to the strain-energy function of a reinforcing model depending on the local fibre direction
Remarks on explicit strong ellipticity conditions for anisotropic or pre-stressed incompressible solids
We present a set of explicit conditions, involving the components of the elastic stiffness tensor, which are necessary and sufficient to ensure the strong ellipticity of an orthorhombic incompressible medium. The derivation is based on the procedure developed by Zee & Sternberg (Arch. Rat. Mech. Anal., 83, 53-90 (1983)) and, consequently, is also applicable to the case of the homogeneously pre-stressed incompressible isotropic solids. This allows us to reformulate the results by Zee & Sternberg in terms of components of the incremental stiffness tensor. In addition, the resulting conditions are specialized to higher symmetry classes and compared with strong ellipticity conditions for plane strain, commonly used in the literature.The first author’s work and the second author’s visit to Brunel University were partly supported by
Brunel University’s ‘BRIEF’ award scheme
SLR - Análisis del Aprendizaje Basado en Juegos Serios en las Prácticas de los Estudios de Ingeniería
Este trabajo se trata de un Análisis Sistemático de la Literatura del uso de los juegos serios en los estudios de ingeniería.15 página
On the Failure of Ellipticity for Compressible Isotropic Nonlinearly Elastic Materials
The ordinary ellipticity status of some compressible isotropic nonlinearly elastic solids is examined under plane deformations
Azimuthal shear of a transversely isotropic elastic solid
In this paper we study the problem of (plane strain) azimuthal shear of a circular cylindrical tube of incompressible transversely isotropic elastic material subject to finite deformation. The preferred direction associated with the transverse isotropy lies in the planes normal to the tube axis and is at an angle with the radial direction that depends only on the radius. For a general form of strain-energy function the considered deformation yields simple expressions for the azimuthal shear stress and the associated strong ellipticity condition in terms of the azimuthal shear strain. These apply for a sense of shear that is either “with” or “against” the preferred direction (anticlockwise and clockwise, respectively), so that material line elements locally in the preferred direction either extend or (at least initially) contract, respectively. For some specific strain-energy functions we then examine local loss of uniqueness of the shear stress–strain relationship and failure of ellipticity for the case of contraction and the dependence on the geometry of the preferred direction. In particular, for a reinforced neo-Hookean material, we obtain closed-form solutions that determine the domain of strong ellipticity in terms of the relationship between the shear strain and the angle (in general, a function of the radius) between the tangent to the preferred direction and the undeformed radial direction. It is shown, in particular, that as the magnitude of the applied shear stress increases then, after loss of ellipticity, there are two admissible values for the shear strain at certain radial locations. Absolutely stable deformations involve the lower magnitude value outside a certain radius and the higher magnitude value within this radius. The radius that separates the two values increases with increasing magnitude of the shear stress. The results are illustrated graphically for two specific forms of energy function
Connection between electrical conductivity and diffusion coefficient of a conductive porous material filled with electrolyte
The paper focuses on the cross-property connection between the effective electrical conductivity and the overall mass transfer coefficient of a two phase material. The two properties are expressed in terms of the tortuosity parameter which generalized to the case of a material with two conductive phases. Elimination of this parameter yields the cross-property connection. The theoretical derivation is verified by comparison with computer simulation
Celebrating in Mexico: an approach from Historical Geography and Cultural Geography
La celebración es una temática que ha sido poco abordada por la geografía, siendo que en la actualidad esta disciplina cuenta con los elementos teóricos y metodológicos para examinar temas sobre identidad y los espacios que la crean y recrean, así como la utilización de eventos y festivales con fines de control político y económico. En México la celebración prácticamente no ha sido estudiada por la geografía.Celebrations is an issue hardly studied by geography, although nowadays this discipline counts with theory and methodology that enables it to analyze identity and the spaces that create and recreate it, and to study events and festivalsas tools of economic and political control. Mexican geography practically has no studies about celebrations
- …
