30 research outputs found

    Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development

    Get PDF
    There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a minor influence on morphology. Although these studies established a defined role of Tmod in regulating dendritic and synaptic morphology, the mechanisms by which Tmods exert these effects are unknown. Here, we overexpressed a series of mutated forms of Tmod1 and Tmod2 with disrupted actin-binding sites in hippocampal neurons and found that Tmod1 and Tmod2 require both of their actin-binding sites to regulate dendritic morphology and dendritic spine shape. Proximity ligation assays (PLAs) indicate that these mutations impact the interaction of Tmod1 and Tmod2 with tropomyosins Tpm3.1 and Tpm3.2. This impact on Tmod/Tpm interaction may contribute to the morphological changes observed. Finally, we use molecular dynamics simulations (MDS) to characterize the structural changes, caused by mutations in the C-terminal helix of the leucine-rich repeat (LRR) domain of Tmod1 and Tmod2 alone and when bound onto actin monomers. Our results expand our understanding of how neurons utilize the different Tmod isoforms in development

    Tropomodulins and tropomyosins: working as a team

    No full text
    Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tmod and TM are crucial constituents of the actin filament network, making their presence indispensable in living cells. Tropomyosin (TM) is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin (Tmod), which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tmod consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two TM-binding sites and one TM-dependent actin-binding site, whereas the C-terminal domain contains a TM-independent actin-binding site. Tmod binds to two TM molecules and at least one actin molecule during capping. The interaction of Tmod with TM is a key regulatory factor for actin filament organization. The binding efficacy of Tmod to TM is isoform-dependent. The affinities of Tmod/TM binding influence the proper localization and capping efficiency of Tmod at the pointed end of actin filaments in cells. Here we describe how a small difference in the sequence of the TM-binding sites of Tmod may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod–TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure

    s42003-021-01893-w (1).pdf

    No full text
    The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2’s function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2’s multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.</p
    corecore