893 research outputs found

    Circumbinary Planet Formation in the Kepler-16 System. II. A Toy Model for In-situ Planet Formation within a Debris Belt

    Get PDF
    Recent simulations have shown that the formation of planets in circumbinary configurations (such as those recently discovered by Kepler) is dramatically hindered at the planetesimal accretion stage. The combined action of the binary and the protoplanetary disk acts to raise impact velocities between km-sized planetesimals beyond their destruction threshold, halting planet formation within at least 10 AU from the binary. It has been proposed that a primordial population of "large" planetesimals (100 km or more in size), as produced by turbulent concentration mechanisms, would be able to bypass this bottleneck; however, it is not clear whether these processes are viable in the highly perturbed circumbinary environments. We perform two-dimensional hydrodynamical and N-body simulations to show that km-sized planetesimals and collisional debris can drift and be trapped in a belt close to the central binary. Within this belt, planetesimals could initially grow by accreting debris, ultimately becoming "indestructible" seeds that can accrete other planetesimals in-situ despite the large impact speeds. We find that large, indestructible planetesimals can be formed close to the central binary within 10510^5 years, therefore showing that even a primordial population of "small" planetesimals can feasibly form a planet.Comment: 3rd version, addressing referee report, typos & references fixed. 15 pages, 10 figures. Accepted for publication in Ap

    Planet Formation in Circumbinary Configurations: Turbulence Inhibits Planetesimal Accretion

    Get PDF
    The existence of planets born in environments highly perturbed by a stellar companion represents a major challenge to the paradigm of planet formation. In numerical simulations, the presence of a close binary companion stirs up the relative velocity between planetesimals, which is fundamental in determining the balance between accretion and erosion. However, the recent discovery of circumbinary planets by Kepler establishes that planet formation in binary systems is clearly viable. We perform N-body simulations of planetesimals embedded in a protoplanetary disk, where planetesimal phasing is frustrated by the presence of stochastic torques, modeling the expected perturbations of turbulence driven by the magnetorotational instability (MRI). We examine perturbation amplitudes relevant to dead zones in the midplane (conducive to planet formation in single stars), and find that planetesimal accretion can be inhibited even in the outer disk (4-10 AU) far from the central binary, a location previously thought to be a plausible starting point for the formation of circumbinary planets.Comment: 5 pages, 4 figures. Accepted for publication in ApJ Letter

    GJ 581 update: Additional Evidence for a Super-Earth in the Habitable Zone

    Get PDF
    We present an analysis of the significantly expanded HARPS 2011 radial velocity data set for GJ 581 that was presented by Forveille et al. (2011). Our analysis reaches substantially different conclusions regarding the evidence for a Super-Earth-mass planet in the star's Habitable Zone. We were able to reproduce their reported \chi_{\nu}^2 and RMS values only after removing some outliers from their models and refitting the trimmed down RV set. A suite of 4000 N-body simulations of their Keplerian model all resulted in unstable systems and revealed that their reported 3.6\sigma detection of e=0.32 for the eccentricity of GJ 581e is manifestly incompatible with the system's dynamical stability. Furthermore, their Keplerian model, when integrated only over the time baseline of the observations, significantly increases the \chi_{\nu}^2 and demonstrates the need for including non-Keplerian orbital precession when modeling this system. We find that a four-planet model with all of the planets on circular or nearly circular orbits provides both an excellent self-consistent fit to their RV data and also results in a very stable configuration. The periodogram of the residuals to a 4-planet all-circular-orbit model reveals significant peaks that suggest one or more additional planets in this system. We conclude that the present 240-point HARPS data set, when analyzed in its entirety, and modeled with fully self-consistent stable orbits, by and of itself does offer significant support for a fifth signal in the data with a period near 32 days. This signal has a False Alarm Probability of <4% and is consistent with a planet of minimum mass of 2.2 Earth-masses, orbiting squarely in the star's Habitable Zone at 0.13 AU, where liquid water on planetary surfaces is a distinct possibilityComment: 15 pages, 7 figures, 10 tables, to appear in Astronomische Nachrichten (Astronomical Notes), published version available on-line on July 20, 201

    Circumbinary Planet Formation in the Kepler-16 system. I. N-body Simulations

    Full text link
    The recently discovered circumbinary planets (Kepler-16 b, Kepler-34 b, Kepler-35 b) represent the first direct evidence of the viability of planet formation in circumbinary orbits. We report on the results of N-body simulations investigating planetesimal accretion in the Kepler-16 b system, focusing on the range of impact velocities under the influence of both stars' gravitational perturbation and friction from a putative protoplanetary disk. Our results show that planet formation might be effectively inhibited for a large range in semi-major axis (1.75 < a_P < 4 AU), suggesting that the planetary core must have either migrated from outside 4 AU, or formed in situ very close to its current location.Comment: 6 pages, 4 figures. Accepted for publication in ApJ. Additional materials available at http://www.stefanom.org/?kep16

    Systemic: A Testbed For Characterizing the Detection of Extrasolar Planets. I. The Systemic Console Package

    Get PDF
    We present the systemic Console, a new all-in-one, general-purpose software package for the analysis and combined multiparameter fitting of Doppler radial velocity (RV) and transit timing observations. We give an overview of the computational algorithms implemented in the Console, and describe the tools offered for streamlining the characterization of planetary systems. We illustrate the capabilities of the package by analyzing an updated radial velocity data set for the HD128311 planetary system. HD128311 harbors a pair of planets that appear to be participating in a 2:1 mean motion resonance. We show that the dynamical configuration cannot be fully determined from the current data. We find that if a planetary system like HD128311 is found to undergo transits, then self-consistent Newtonian fits to combined radial velocity data and a small number of timing measurements of transit midpoints can provide an immediate and vastly improved characterization of the planet's dynamical state.Comment: 10 pages, 5 figures, accepted for publication on PASP. Additional material at http://www.ucolick.org/~smeschia/systemic.ph

    The Lick-Carnegie Exoplanet Survey: A Saturn-Mass Planet in the Habitable Zone of the Nearby M4V Star HIP 57050

    Get PDF
    Precision radial velocities from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of 0.3 Jupiter-mass, an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the radial velocity variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of approximately 230 K. The star has a metallicity of [Fe/H] = 0.32+/-0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet-metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is ~7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with HST. At the expected planetary effective temperature, the atmosphere may contain water clouds.Comment: 20 pages, 5 figures, 3 tables, to appear in the May 20 issue of ApJ

    Kepler-16b: safe in a resonance cell

    Full text link
    The planet Kepler-16b is known to follow a circumbinary orbit around a system of two main-sequence stars. We construct stability diagrams in the "pericentric distance - eccentricity" plane, which show that Kepler-16b is in a hazardous vicinity to the chaos domain - just between the instability "teeth" in the space of orbital parameters. Kepler-16b survives, because it is close to the stable half-integer 11/2 orbital resonance with the central binary, safe inside a resonance cell bounded by the unstable 5/1 and 6/1 resonances. The neighboring resonance cells are vacant, because they are "purged" by Kepler-16b, due to overlap of first-order resonances with the planet. The newly discovered planets Kepler-34b and Kepler-35b are also safe inside resonance cells at the chaos border.Comment: 17 pages, including 5 figure

    Degeneracy in the characterization of non-transiting planets from transit timing variations

    Full text link
    The transit timing variation (TTV) method allows the detection of non-transiting planets through their gravitational perturbations. Since TTVs are strongly enhanced in systems close to mean-motion resonances (MMR), even a low mass planet can produce an observable signal. This technique has thus been proposed to detect terrestrial planets. In this letter, we analyse TTV signals for systems in or close to MMR in order to illustrate the difficulties arising in the determination of planetary parameters. TTVs are computed numerically with an n-body integrator for a variety of systems close to MMR. The main features of these TTVs are also derived analytically. Systems deeply inside MMR do not produce particularly strong TTVs, while those close to MMR generate quasiperiodic TTVs characterised by a dominant long period term and a low amplitude remainder. If the remainder is too weak to be detected, then the signal is strongly degenerate and this prevents the determination of the planetary parameters. Even though an Earth mass planet can be detected by the TTV method if it is close to a MMR, it may not be possible to assert that this planet is actually an Earth mass planet. On the other hand, if the system is right in the center of a MMR, the high amplitude oscillation of the TTV signal vanishes and the detection of the perturber becomes as difficult as it is far from MMR.Comment: 5 pages, 3 figures, submitted to MNRA

    The Lick-Carnegie Survey: Four New Exoplanet Candidates

    Full text link
    We present new precise HIRES radial velocity (RV) data sets of five nearby stars obtained at Keck Observatory. HD 31253, HD 218566, HD 177830, HD 99492 and HD 74156 are host stars of spectral classes F through K and show radial velocity variations consistent with new or additional planetary companions in Keplerian motion. The orbital parameters of the candidate planets in the five planetary systems span minimum masses of M sin i = 27.43 M_{earth} to M sin i = 8.28 M_{jup}, periods of 17.05 to 4696.95 days and eccentricities ranging from circular to extremely eccentric (e ~ 0.63). The 5th star, HD 74156, was known to have both a 52-day and a 2500-day planet, and was claimed to also harbor a 3rd planet at 336d, in apparent support of the "Packed Planetary System" hypothesis. Our greatly expanded data set for HD 74156 provides strong confirmation of both the 52-day and 2500-d planets, but strongly contradicts the existence of a 336-day planet, and offers no significant evidence for any other planets in the system.Comment: 13 pages, 15 figures. Accepted for publication in ApJ. Fixed typos in Table 2. Additional material at http://www.ucolick.org/~smeschia/4planet.ph

    Analysis of radial velocity variations in multiple planetary systems

    Full text link
    The study of multiple extrasolar planetary systems has the opportunity to obtain constraints for the planetary masses and orbital inclinations via the detection of mutual perturbations. The analysis of precise radial velocity measurements might reveal these planet-planet interactions and yields a more accurate view of such planetary systems. Like in the generic data modelling problems, a fit to radial velocity data series has a set of unknown parameters of which parametric derivatives have to be known by both the regression methods and the estimations for the uncertainties. In this paper an algorithm is described that aids the computation of such derivatives in case of when planetary perturbations are not neglected. The application of the algorithm is demonstrated on the planetary systems of HD 73526, HD 128311 and HD 155358. In addition to the functions related to radial velocity analysis, the actual implementation of the algorithm contains functions that computes spatial coordinates, velocities and barycentric coordinates for each planet. These functions aid the joint analysis of multiple transiting planetary systems, transit timing and/or duration variations or systems where the proper motion of the host star is also measured involving high precision astrometry. The practical implementation related to the above mentioned problems features functions that makethese kind of investigations rather simple and effective.Comment: Accepted for publication in MNRAS, 11 pages, 1 figure, 3 table
    corecore