899 research outputs found
Mechanical properties of a lap joint under uniform clamping pressure
Equations were derived for the load deflection relations, the energy dissipation per cycle, and the instantaneous rate of dissipation for a lap joint idealized as two overlapping plates clamped together under a uniform clamping pressure
A study on range gated temporal reference acoustical holography Final technical report
Acoustical holographic imaging techniques for noninvasive visualization of soft tissue structures in ma
Repair of Aberrant Splicing in Growth Hormone Receptor by Antisense Oligonucleotides Targeting the Splice Sites of a Pseudoexon
Context: The GH receptor (GHR) pseudoexon 6 Psi defect is a frequent cause of GH insensitivity (GHI) resulting from a non-functioning GH receptor (GHR). It results in a broad range of phenotypes and may also be present in patients diagnosed as idiopathic short stature.Objective: Our objective was to correct aberrant GHR splicing and inclusion of 6 Psi using exon-skipping antisense oligonucleotides (ASOs).Design and Setting: Three ASOs binding the 5' (ASO-5), 3' (ASO-3), and branch site (ASO-Br) of 6 Psi were tested in an in vitro splicing assay and a cell transfection system. The wild-type (wt) and mutant (mt) DNA minigenes (wt- and mtL1-GHR6 Psi-L2, respectively) were created by inserting the GHR 6 Psi in a well-characterized splice reporter (Adml-par). For the in vitro splicing assay, the wt- and mtL1-GHR6 Psi-L2 were transcribed into pre-mRNA in the presence of [alpha P-32]GTP and incubated with ASOs in HeLa nuclear extracts. For the cell transfection studies, wt-and mtL1-GHR6 Psi-L2 cloned into pcDNA 3.1 were transfected with ASOs into HEK293 cells. After 48 h, RNA was extracted and radiolabeled RT-PCR products quantified.Results: ASO-3 induced an almost complete pseudoexon skipping in vitro and in HEK293 cells. This effect was dose dependent and maximal at 125-250 nM. ASO-5 produced modest pseudoexon skipping, whereas ASO-Br had no effect. Targeting of two splice elements simultaneously was less effective than targeting one. ASO-Br was tested on the wtL1-GHR6 Psi-L2 and did not act as an enhancer of 6 Psi inclusion.Conclusions: The exon-skipping ASO approach was effective in correcting aberrant GHR splicing and may be a promising therapeutic tool. (J Clin Endocrinol Metab 95: 3542-3546, 2010
Geometric isomerism in coordination cages based on tris-chelate vertices: a tool to control both assembly and host/guest chemistry.
This 'Perspective' article summarises recent work from the authors' research group on the exploitation of the simple fac/mer geometric isomerism of octahedral metal tris-chelates as a tool to control the chemistry of coordination cages based on bis(pyrazolyl-pyridine) ligands, in two different respects. Firstly this geometric isomerism plays a major role in controlling the guest binding properties of cages because a fac tris-chelate arrangement of pyrazolyl-pyridine chelates around a metal ion vertex results in formation of a convergent set of inwardly-directed C-H protons in a region of high positive electrostatic potential close to a metal cation. This collection of δ+ protons therefore provides a charge-assisted hydrogen-bond donor site, which interacts with the electron-rich regions of guest molecules that are of the correct size and shape to occupy the cage cavity, and the strength of this hydrogen-bonding interaction plays a major role in guest recognition in non-aqueous solvents. Secondly the ability to prepare mononuclear complexes with either a fac or mer arrangement of ligands provides an entry into the controlled, stepwise assembly of heterometallic cages based on a combination of kinetically inert and kinetically labile metal ions at different sites. This has allowed introduction of useful physical properties such as redox activity or luminescence, commonly associated with inert metal ions which are not amenable to participation in thermodynamic self-assembly processes, to be incorporated in a predictable way into the superstructures of coordination cages at specific sites
Severe loss-of-function mutations in the adrenocorticotropin receptor (ACTHR, MC2R) can be found in patients diagnosed with salt-losing adrenal hypoplasia
Objective: Familial glucocorticoid deficiency type I (FGD1) is a rare form of primary adrenal insufficiency resulting from recessive mutations in the ACTH receptor (MC2R, MC2R). Individuals with this condition typically present in infancy or childhood with signs and symptoms of cortisol insufficiency, but disturbances in the renin-angiotensin system, aldosterone synthesis or sodium homeostasis are not a well-documented association of FGD1. As ACTH stimulation has been shown to stimulate aldosterone release in normal controls, and other causes of hyponatraemia can occur in children with cortisol deficiency, we investigated whether MC2R changes might be identified in children with primary adrenal failure who were being treated for mineralocorticoid insufficiency.
Design: Mutational analysis of MC2R by direct sequencing.
Patients: Children (n = 22) who had been diagnosed with salt-losing forms of adrenal hypoplasia (19 isolated cases, 3 familial), and who were negative for mutations in DAX1 (NR0B1) and SF1 (NR5A1).
Results: MC2R mutations were found in three individuals or kindred (I: homozygous S74I; II: novel compound heterozygous R146H/560delT; III: novel homozygous 579-581delTGT). These changes represent severely disruptive loss-of-function mutations in this G-protein coupled receptor, including the first reported homozygous frameshift mutation. The apparent disturbances in sodium homeostasis were mild, manifest at times of stress (e.g. infection, salt-restriction, heat), and likely resolved with time.
Conclusions: MC2R mutations should be considered in children who have primary adrenal failure with apparent mild disturbances in renin-sodium homeostasis. These children may have been misdiagnosed as having salt-losing adrenal hypoplasia. Making this diagnosis has important implications for treatment, counselling and long-term prognosi
First principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets
Recently it was demonstrated (Schattschneider et al., Nature 441 (2006),
486), that an analogue of the X-ray magnetic circular dichroism (XMCD)
experiment can be performed with the transmission electron microscope (TEM).
The new phenomenon has been named energy-loss magnetic chiral dichroism (EMCD).
In this work we present a detailed ab initio study of the chiral dichroism in
the Fe, Co and Ni transition elements. We discuss the methods used for the
simulations together with the validity and accuracy of the treatment, which
can, in principle, apply to any given crystalline specimen. The dependence of
the dichroic signal on the sample thickness, accuracy of the detector position
and the size of convergence and collection angles is calculated.Comment: 9 pages, 6 figures, submitted to Physical Review
Accounting for the utilization of a N₂O mitigation tool in the IPCC inventory methodology for agricultural soils
In this study we review recent studies
where dicyandiamide was used as a nitrification inhibitor to reduce both N₂O emissions from urine patches and nitrate leaching from pasture systems, and which led to the development of a commercial product for use on farmland. On average, emissions of N₂O and nitrate leaching were reduced by 72% and 61%, respectively. This study then demonstrates how a mitigation tool
can be accounted for in the Intergovernmental
Panel on Climate Change's inventory methodology when constructing an inventory of New Zealand's agricultural soil N₂O emissions. The current New Zealand specific emission factors for EF1 (0.01), EF3PRP (0.01) and FracLEACH (0.07) are amended to values of 0.0058, 0.0058 and 0.0455. Examples are also given, based on OVERSEER
TM models, of the implications of farm
management scenarios on N₂O inventories and
total greenhouse gas production when using a
N₂O mitigation tool; CO₂ equivalents kg⁻¹ milk solid decreased from 14.2 to as little as 11.7, depending on the management scenario modelled
Stepwise assembly of an adamantoid Ru4Ag6 cage by control of metal coordination geometry at specific sites
The geometrically pure ‘complex ligand’ fac-[Ru(Lph)3]2+, in which three pendant bidentate binding sites are located on one face of the complex, reacts with Ag(I) ions to form the adamantoid decanuclear cage [{Ru(Lph)3}4Ag6](PF6)14 which contains a 6-coordinate Ru(II) ion at each vertex of a large tetrahedron and a 4-coordinate Ag(I) ion along each edge
Highly selective CO2 vs. N2 adsorption in the cavity of a molecular coordination cage
Two M8L12 cubic coordination cages, as desolvated crystalline powders, preferentially adsorb CO2 over N2 with ideal selectivity CO2/N2 constants of 49 and 30 at 298 K. A binding site for CO2 is suggested by crystallographic location of CS2 within the cage cavity at an electropositive hydrogen-bond donor site, potentially explaining the high CO2/N2 selectivity compared to other materials with this level of porosity
Experimental application of sum rules for electron energy loss magnetic chiral dichroism
We present a derivation of the orbital and spin sum rules for magnetic
circular dichroic spectra measured by electron energy loss spectroscopy in a
transmission electron microscope. These sum rules are obtained from the
differential cross section calculated for symmetric positions in the
diffraction pattern. Orbital and spin magnetic moments are expressed explicitly
in terms of experimental spectra and dynamical diffraction coefficients. We
estimate the ratio of spin to orbital magnetic moments and discuss first
experimental results for the Fe L_{2,3} edge.Comment: 11 pages, 2 figure
- …
