619 research outputs found

    Characterizing the Risk Profiles of Intensive Care Units

    Get PDF
    OBJECTIVE: To develop a new method to evaluate the performance of individual ICUs through the calculation and visualisation of risk profiles. METHODS: The study included 102,561 patients consecutively admitted to 77 ICUs in Austria. We customized the function which predicts hospital mortality (using SAPS II) for each ICU. We then compared the risks of hospital mortality resulting from this function with the risks which would be obtained using the original function. The derived risk ratio was then plotted together with point-wise confidence intervals in order to visualise the individual risk profile of each ICU over the whole spectrum of expected hospital mortality. MAIN MEASUREMENTS AND RESULTS: We calculated risk profiles for all ICUs in the ASDI data set according to the proposed method. We show examples how the clinical performance of ICUs may depend on the severity of illness of their patients. Both the distribution of the Hosmer-Lemeshow goodness-of-fit test statistics and the histogram of the corresponding P values demonstrated a good fit of the individual risk models. CONCLUSIONS: Our risk profile model makes it possible to evaluate ICUs on the basis of the specific risk for patients to die compared to a reference sample over the whole spectrum of hospital mortality. Thus, ICUs at different levels of severity of illness can be directly compared, giving a clear advantage over the use of the conventional single point estimate of the overall observed-to-expected mortality ratio

    Weekends affect mortality risk and chance of discharge in critically ill patients: a retrospective study in the Austrian registry for intensive care.

    Get PDF
    BACKGROUND: In this study, we primarily investigated whether ICU admission or ICU stay at weekends (Saturday and Sunday) is associated with a different risk of ICU mortality or chance of ICU discharge than ICU admission or ICU stay on weekdays (Monday to Friday). Secondarily, we analysed whether weekend ICU admission or ICU stay influences risk of hospital mortality or chance of hospital discharge. METHODS: A retrospective study was performed for all adult patients admitted to 119 ICUs participating in the benchmarking project of the Austrian Centre for Documentation and Quality Assurance in Intensive Care (ASDI) between 2012 and 2015. Readmissions to the ICU during the same hospital stay were excluded. RESULTS: In a multivariable competing risk analysis, a strong weekend effect was observed. Patients admitted to ICUs on Saturday or Sunday had a higher mortality risk after adjustment for severity of illness by Simplified Acute Physiology Score (SAPS) 3, year, month of the year, type of admission, ICU, and weekday of death or discharge. Hazard ratios (95% confidence interval) for death in the ICU following admission on a Saturday or Sunday compared with Wednesday were 1.15 (1.08-1.23) and 1.11 (1.03-1.18), respectively. Lower hazard ratios were observed for dying on a Saturday (0.93 (0.87-1.00)) or Sunday (0.85 (0.80-0.91)) compared with Wednesday. This is probably related to the reduced chance of being discharged from the ICU at the weekend (0.63 (0.62-064) for Saturday and 0.56 (0.55-0.57) for Sunday). Similar results were found for hospital mortality and hospital discharge following ICU admission. CONCLUSIONS: Patients admitted to ICUs at weekends are at increased risk of death in both the ICU and the hospital even after rigorous adjustment for severity of illness. Conversely, death in the ICU and discharge from the ICU are significantly less likely at weekends

    Sepsis Mortality Prediction Based on Predisposition, Infection and Response

    Get PDF
    OBJECTIVE: To empirically test, based on a large multicenter, multinational database, whether a modified PIRO (predisposition, insult, response, and organ dysfunction) concept could be applied to predict mortality in patients with infection and sepsis. DESIGN: Substudy of a multicenter multinational cohort study (SAPS 3). PATIENTS: A total of 2,628 patients with signs of infection or sepsis who stayed in the ICU for >48 h. Three boxes of variables were defined, according to the PIRO concept. Box 1 (Predisposition) contained information about the patient's condition before ICU admission. Box 2 (Injury) contained information about the infection at ICU admission. Box 3 (Response) was defined as the response to the infection, expressed as a Sequential Organ Failure Assessment score after 48 h. INTERVENTIONS: None. MAIN MEASUREMENTS AND RESULTS: Most of the infections were community acquired (59.6%); 32.5% were hospital acquired. The median age of the patients was 65 (50-75) years, and 41.1% were female. About 22% (n=576) of the patients presented with infection only, 36.3% (n=953) with signs of sepsis, 23.6% (n=619) with severe sepsis, and 18.3% (n=480) with septic shock. Hospital mortality was 40.6% overall, greater in those with septic shock (52.5%) than in those with infection (34.7%). Several factors related to predisposition, infection and response were associated with hospital mortality. CONCLUSION: The proposed three-level system, by using objectively defined criteria for risk of mortality in sepsis, could be used by physicians to stratify patients at ICU admission or shortly thereafter, contributing to a better selection of management according to the risk of death

    Modeling in-Hospital Patient Survival During the First 28 Days After Intensive Care Unit Admission: a Prognostic Model for Clinical Trials in General Critically Ill Patients

    Get PDF
    OBJECTIVE: The objective of the study was to develop a model for estimating patient 28-day in-hospital mortality using 2 different statistical approaches. DESIGN: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model. SETTING: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology Score (SAPS) 3 cohort. PATIENTS AND PARTICIPANTS: Patients (n = 17138) were from the SAPS 3 database with follow-up data pertaining to the first 28 days in hospital after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The database was divided randomly into 5 roughly equal-sized parts (at the ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score calibrated to vital status at hospital discharge, both on the general population and in major subgroups. CONCLUSIONS: Both statistical methods can be used to model the 28-day in-hospital mortality better than the SAPS 3 admission model. However, because the logistic regression approach is specifically designed to forecast 28-day mortality, and given the high uncertainty associated with the assumption of the proportionality of risks in the Cox model, the logistic regression approach proved to be superior

    Variability in outcome and resource use in intensive care units

    Get PDF
    Objective: To examine variability in outcome and resource use between ICUs. Secondary aims: to assess whether outcome and resource use are related to ICU structure and process, to explore factors associated with efficient resource use. Design and setting: Cohort study, based on the SAPS3 database in 275 ICUs worldwide. Patients: 16,560 adults. Measurements and results: Outcome was defined by standardized mortality rate (SMR). Standardized resource use (SRU) was calculated based on length of stay in the ICU, adjusted for severity of acute illness. Each unit was assigned to one of four groups: "most efficient” (SMR and SRU  median); "overachieving” (low SMR, high SRU), "underachieving” (high SMR, low SRU). Univariate analysis and stepwise logistic regression were used to test for factors separating "most” from "least efficient” units. Overall median SMR was 1.00 (IQR 0.77-1.28) and SRU 1.07 (0.76-1.58). There were 91 "most efficient”, 91 "least efficient”, 47 "overachieving”, and 46 "underachieving” ICUs. Number of physicians, of full-time specialists, and of nurses per bed, clinical rounds, availability of physicians, presence of emergency department, and geographical region were significant in univariate analysis. In multivariate analysis only interprofessional rounds, emergency department, and geographical region entered the model as significant. Conclusions: Despite considerable variability in outcome and resource use only few factors of ICU structure and process were associated with efficient use of ICU. This suggests that other confounding factors play an important rol

    Time of Day and its Association with Risk of Death and Chance of Discharge in Critically Ill Patients: A Retrospective Study.

    Get PDF
    Outcomes following admission to intensive care units (ICU) may vary with time and day. This study investigated associations between time of day and risk of ICU mortality and chance of ICU discharge in acute ICU admissions. Adult patients (age ≥ 18 years) who were admitted to ICUs participating in the Austrian intensive care database due to medical or surgical urgencies and emergencies between January 2012 and December 2016 were included in this retrospective study. Readmissions were excluded. Statistical analysis was conducted using the Fine-and-Gray proportional subdistribution hazards model concerning ICU mortality and ICU discharge within 30 days adjusted for SAPS 3 score. 110,628 admissions were analysed. ICU admission during late night and early morning was associated with increased hazards for ICU mortality; HR: 1.17; 95% CI: 1.08-1.28 for 00:00-03:59, HR: 1.16; 95% CI: 1.05-1.29 for 04:00-07:59. Risk of death in the ICU decreased over the day; lowest HR: 0.475, 95% CI: 0.432-0.522 for 00:00-03:59. Hazards for discharge from the ICU dropped sharply after 16:00; lowest HR: 0.024; 95% CI: 0.019-0.029 for 00:00-03:59. We conclude that there are "time effects" in ICUs. These findings may spark further quality improvement efforts

    Do acute elevations of serum creatinine in primary care engender an increased mortality risk?

    Get PDF
    Background: The significant impact Acute Kidney Injury (AKI) has on patient morbidity and mortality emphasizes the need for early recognition and effective treatment. AKI presenting to or occurring during hospitalisation has been widely studied but little is known about the incidence and outcomes of patients experiencing acute elevations in serum creatinine in the primary care setting where people are not subsequently admitted to hospital. The aim of this study was to define this incidence and explore its impact on mortality. Methods: The study cohort was identified by using hospital data bases over a six month period. Inclusion criteria: People with a serum creatinine request during the study period, 18 or over and not on renal replacement therapy. The patients were stratified by a rise in serum creatinine corresponding to the Acute Kidney Injury Network (AKIN) criteria for comparison purposes. Descriptive and survival data were then analysed. Ethical approval was granted from National Research Ethics Service (NRES) Committee South East Coast and from the National Information Governance Board. Results: The total study population was 61,432. 57,300 subjects with ‘no AKI’, mean age 64.The number (mean age) of acute serum creatinine rises overall were, ‘AKI 1’ 3,798 (72), ‘AKI 2’ 232 (73), and ‘AKI 3’ 102 (68) which equates to an overall incidence of 14,192 pmp/year (adult). Unadjusted 30 day survival was 99.9% in subjects with ‘no AKI’, compared to 98.6%, 90.1% and 82.3% in those with ‘AKI 1’, ‘AKI 2’ and ‘AKI 3’ respectively. After multivariable analysis adjusting for age, gender, baseline kidney function and co-morbidity the odds ratio of 30 day mortality was 5.3 (95% CI 3.6, 7.7), 36.8 (95% CI 21.6, 62.7) and 123 (95% CI 64.8, 235) respectively, compared to those without acute serum creatinine rises as defined. Conclusions: People who develop acute elevations of serum creatinine in primary care without being admitted to hospital have significantly worse outcomes than those with stable kidney function

    What is the real impact of acute kidney injury?

    Get PDF
    Background: Acute kidney injury (AKI) is a common clinical problem. Studies have documented the incidence of AKI in a variety of populations but to date we do not believe the real incidence of AKI has been accurately documented in a district general hospital setting. The aim here was to describe the detected incidence of AKI in a typical general hospital setting in an unselected population, and describe associated short and long-term outcomes. Methods: A retrospective observational database study from secondary care in East Kent (adult catchment population of 582,300). All adult patients (18 years or over) admitted between 1st February 2009 and 31st July 2009, were included. Patients receiving chronic renal replacement therapy (RRT), maternity and day case admissions were excluded. AKI was defined by the acute kidney injury network (AKIN) criteria. A time dependent risk analysis with logistic regression and Cox regression was used for the analysis of in-hospital mortality and survival. Results: The incidence of AKI in the 6 month period was 15,325 pmp/yr (adults) (69% AKIN1, 18% AKIN2 and 13% AKIN3). In-hospital mortality, length of stay and ITU utilisation all increased with severity of AKI. Patients with AKI had an increase in care on discharge and an increase in hospital readmission within 30 days. Conclusions: This data comes closer to the real incidence and outcomes of AKI managed in-hospital than any study published in the literature to date. Fifteen percent of all admissions sustained an episode of AKI with increased subsequent short and long term morbidity and mortality, even in those with AKIN1. This confers an increased burden and cost to the healthcare economy, which can now be quantified. These results will furnish a baseline for quality improvement projects aimed at early identification, improved management, and where possible prevention, of AKI
    corecore