365 research outputs found

    A "kilonova" associated with short-duration gamma-ray burst 130603B

    Full text link
    Short-duration gamma-ray bursts (SGRBs) are intense flashes of cosmic gamma-rays, lasting less than ~2 s, whose origin is one of the great unsolved questions of astrophysics today. While the favoured hypothesis for their production, a relativistic jet created by the merger of two compact stellar objects (specifically, two neutron stars, NS-NS, or a neutron star and a black hole, NS-BH), is supported by indirect evidence such as their host galaxy properties, unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species, whose decay should result in a faint transient in the days following the burst, a so-called "kilonova". Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe. Recent calculations suggest much of the kilonova energy should appear in the near-infrared (nIR) due to the high optical opacity created by these heavy r-process elements. Here we report strong evidence for such an event accompanying SGRB 130603B. If this simplest interpretation of the data is correct, it provides (i) support for the compact object merger hypothesis of SGRBs, (ii) confirmation that such mergers are likely sites of significant r-process production and (iii) quite possibly an alternative, un-beamed electromagnetic signature of the most promising sources for direct detection of gravitational waves.Comment: preprint of paper appearing in Nature (3 Aug 2013

    Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems

    Get PDF
    This paper reports circular spectropolarimetry and X-ray observations of several polluted white dwarfs including WD 1145+017, with the aim to constrain the behaviour of disc material and instantaneous accretion rates in these evolved planetary systems. Two stars with previously observed Zeeman splitting, WD 0322–019 and WD 2105–820, are detected above 5σ and Bz > 1 kG, while WD 1145+017, WD 1929+011, and WD 2326+049 yield (null) detections below this minimum level of confidence. For these latter three stars, high-resolution spectra and atmospheric modelling are used to obtain limits on magnetic field strengths via the absence of Zeeman splitting, finding B∗ < 20 kG based on data with resolving power R ≈ 40 000. An analytical framework is presented for bulk Earth composition material falling on to the magnetic polar regions of white dwarfs, where X-rays and cyclotron radiation may contribute to accretion luminosity. This analysis is applied to X-ray data for WD 1145+017, WD 1729+371, and WD 2326+049, and the upper bound count rates are modelled with spectra for a range of plasma kT = 1–10 keV in both the magnetic and non-magnetic accretion regimes. The results for all three stars are consistent with a typical dusty white dwarf in a steady state at 108–109 g s−1. In particular, the non-magnetic limits for WD 1145+017 are found to be well below previous estimates of up to 1012 g s−1, and likely below 1010 g s−1, thus suggesting the star-disc system may be average in its evolutionary state, and only special in viewing geometry

    Gamma-Ray Bursts in the Swift Era

    Full text link
    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts (GRBs). Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of GRBs as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than 40 years after their discovery, GRBs continue to present major challenges on both observational and theoretical fronts.Comment: 67 pages, 16 figures; ARAA, 2009; http://arjournals.annualreviews.org/toc/astro/47/

    Dust Echoes from Luminous Fast Blue Optical Transients

    Get PDF
    Luminous fast blue optical transients (LFBOTs) such as AT2018cow form a rare class of engine-powered explosions of uncertain origin. A hallmark feature of these events is radio/millimeter synchrotron emission powered by the interaction of fast ≳0.1c ejecta and dense circumstellar material (CSM) extending to large radii ≳1016 cm surrounding the progenitor. Assuming this CSM to be an outflow from the progenitor, we show that dust grains up to ∼1 μm in size can form in the outflow in the years before the explosion. This dusty CSM would attenuate the transient’s ultraviolet emission prior to peak light, before being destroyed by the rising luminosity, reddening the premaximum colors (consistent with the premaximum red-to-blue color evolution of the LFBOT candidate MUSSES2020J). Reradiation by the dust before being destroyed generates a near-infrared (NIR) “echo” of luminosity ∼1041-1042 erg s−1 lasting weeks, which is detectable over the transient’s rapidly fading blue continuum. We show that this dust echo is compatible with the previously unexplained NIR excess observed in AT2018cow. The gradual decay of the early NIR light curve can result from CSM, which is concentrated in a wide-angle equatorial outflow or torus, consistent with the highly aspherical geometry of AT2018cow’s ejecta. Premaximum optical/UV and NIR follow-up of LFBOTs provide a new probe of their CSM environments and place additional constraints on their progenitors

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo

    Get PDF
    High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger.

    Get PDF
    The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of γ-rays, a gravitational-wave signal, and a transient optical-near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named 'macronovae' or 'kilonovae', are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short γ-ray burst at redshift z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational-wave source GW170817 and γ-ray burst GRB 170817A associated with a galaxy at a distance of 40 megaparsecs from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum, indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03 to 0.05 solar masses of material, including high-opacity lanthanides

    Radio Remnants of Compact Binary Mergers - the Electromagnetic Signal that will follow the Gravitational Waves

    Full text link
    The question "what is the observable electromagnetic (EM) signature of a compact binary merger?" is an intriguing one with crucial consequences to the quest for gravitational waves (GW). Compact binary mergers are prime sources of GW, targeted by current and next generation detectors. Numerical simulations have demonstrated that these mergers eject energetic sub-relativistic (or even relativistic) outflows. This is certainly the case if the mergers produce short GRBs, but even if not, significant outflows are expected. The interaction of such outflows with the surround matter inevitably leads to a long lasting radio signal. We calculate the expected signal from these outflows (our calculations are also applicable to short GRB orphan afterglows) and we discuss their detectability. We show that the optimal search for such signal should, conveniently, take place around 1.4 GHz. Realistic estimates of the outflow parameters yield signals of a few hundred μ\muJy, lasting a few weeks, from sources at the detection horizon of advanced GW detectors. Followup radio observations, triggered by GW detection, could reveal the radio remnant even under unfavorable conditions. Upcoming all sky surveys can detect a few dozen, and possibly even thousands, merger remnants at any give time, thereby providing robust merger rate estimates even before the advanced GW detectors become operational. In fact, the radio transient RT 19870422 fits well the overall properties predicted by our model and we suggest that its most probable origin is a compact binary merger radio remnant

    Liverpool telescope 2: a new robotic facility for rapid transient follow-up

    Get PDF
    The Liverpool Telescope is one of the world's premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other facilities such as SVOM, SKA and CTA; and the era of `multi-messenger astronomy', wherein events are detected via non-electromagnetic means, such as gravitational wave emission. We describe here our plans for Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the LT at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. The motivation for this is twofold: firstly it will make it a world-leading facility for the study of fast fading transients and explosive phenomena discovered at early times. Secondly, it will enable large-scale programmes of low-to-intermediate resolution spectral classification of transients to be performed with great efficiency. In the target-rich environment of the LSST era, minimising acquisition overheads will be key to maximising the science gains from any follow-up programme. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design
    corecore