8,985 research outputs found
Encoding and processing of sensory information in neuronal spike trains
Recently, a statistical signal-processing technique has allowed the information carried by single spike trains of sensory neurons on time-varying stimuli to be characterized quantitatively in a variety of preparations. In weakly electric fish, its application to first-order sensory neurons encoding electric field amplitude (P-receptor afferents) showed that they convey accurate information on temporal modulations in a behaviorally relevant frequency range (<80 Hz). At the next stage of the electrosensory pathway (the electrosensory lateral line lobe, ELL), the information sampled by first-order neurons is used to extract upstrokes and downstrokes in the amplitude modulation waveform. By using signal-detection techniques, we determined that these temporal features are explicitly represented by short spike bursts of second-order neurons (ELL pyramidal cells). Our results suggest that the biophysical mechanism underlying this computation is of dendritic origin. We also investigated the accuracy with which upstrokes and downstrokes are encoded across two of the three somatotopic body maps of the ELL (centromedial and lateral). Pyramidal cells of the centromedial map, in particular I-cells, encode up- and downstrokes more reliably than those of the lateral map. This result correlates well with the significance of these temporal features for a particular behavior (the jamming avoidance response) as assessed by lesion experiments of the centromedial map
Dynamical susceptibilities in strong coupling approach
A general scheme to calculate dynamical susceptibilities of strongly
correlated electron systems within the dynamical mean field theory is
developed. Approach is based on an expansion over electron hopping around the
atomic limit (within the diagrammatic technique for site operators: projection
and Hubbard ones) in infinite dimensions. As an example, the Falicov-Kimball
and simplified pseudospin-electron models are considered for which an
analytical expressions for dynamical susceptibilities are obtained.Comment: 2 pages, 3 eps figures, final version published in proceedings of
M2S-HTSC-VI (Houston
Two particle correlations and orthogonality catastrophe in interacting Fermi systems
The wave function of two fermions, repulsively interacting in the presence of
a Fermi sea, is evaluated in detail. We consider large but finite systems in
order to obtain an unabiguous picture of the two-particle correlations. As
recently pointed out by Anderson, in two or lower dimensions the particles may
be correlated even when situated on the Fermi surface. The "partial exclusion
principle" for two particles with opposite spin on the same Fermi point is
discussed, and related to results from the T-matrix approximation. Particles on
different Fermi points are shown to be uncorrelated in dimensions d > 1. Using
the results for the two-particle correlations we find that the orthogonality
effect induced by adding an extra particle to a (tentative) two-dimensional
Fermi liquid is finite.Comment: 25 pages, LATEX, RWTH/ITP-C 10/9
- …
