17,321 research outputs found
Input-output theory for spin-photon coupling in Si double quantum dots
The interaction of qubits via microwave frequency photons enables
long-distance qubit-qubit coupling and facilitates the realization of a
large-scale quantum processor. However, qubits based on electron spins in
semiconductor quantum dots have proven challenging to couple to microwave
photons. In this theoretical work we show that a sizable coupling for a single
electron spin is possible via spin-charge hybridization using a magnetic field
gradient in a silicon double quantum dot. Based on parameters already shown in
recent experiments, we predict optimal working points to achieve a coherent
spin-photon coupling, an essential ingredient for the generation of long-range
entanglement. Furthermore, we employ input-output theory to identify observable
signatures of spin-photon coupling in the cavity output field, which may
provide guidance to the experimental search for strong coupling in such
spin-photon systems and opens the way to cavity-based readout of the spin
qubit
High Resolution Valley Spectroscopy of Si Quantum Dots
We study an accumulation mode Si/SiGe double quantum dot (DQD) containing a
single electron that is dipole coupled to microwave photons in a
superconducting cavity. Measurements of the cavity transmission reveal
dispersive features due to the DQD valley states in Si. The occupation of the
valley states can be increased by raising temperature or applying a finite
source-drain bias across the DQD, resulting in an increased signal. Using
cavity input-output theory and a four-level model of the DQD, it is possible to
efficiently extract valley splittings and the inter- and intra-valley tunnel
couplings
Flopping-mode electric dipole spin resonance
Traditional approaches to controlling single spins in quantum dots require
the generation of large electromagnetic fields to drive many Rabi oscillations
within the spin coherence time. We demonstrate "flopping-mode" electric dipole
spin resonance, where an electron is electrically driven in a Si/SiGe double
quantum dot in the presence of a large magnetic field gradient. At zero
detuning, charge delocalization across the double quantum dot enhances coupling
to the drive field and enables low power electric dipole spin resonance.
Through dispersive measurements of the single electron spin state, we
demonstrate a nearly three order of magnitude improvement in driving efficiency
using flopping-mode resonance, which should facilitate low power spin control
in quantum dot arrays
Long-Range Microwave Mediated Interactions Between Electron Spins
Entangling gates for electron spins in semiconductor quantum dots are
generally based on exchange, a short-ranged interaction that requires
wavefunction overlap. Coherent spin-photon coupling raises the prospect of
using photons as long-distance interconnects for spin qubits. Realizing a key
milestone for spin-based quantum information processing, we demonstrate
microwave-mediated spin-spin interactions between two electrons that are
physically separated by more than 4 mm. Coherent spin-photon coupling is
demonstrated for each individual spin using microwave transmission
spectroscopy. An enhanced vacuum Rabi splitting is observed when both spins are
tuned into resonance with the cavity, indicative of a coherent spin-spin
interaction. Our results demonstrate that microwave-frequency photons can be
used as a resource to generate long-range two-qubit gates between spatially
separated spins
Threshold Dynamics of a Semiconductor Single Atom Maser
We demonstrate a single-atom maser consisting of a semiconductor double
quantum dot (DQD) that is embedded in a high quality factor microwave cavity. A
finite bias drives the DQD out of equilibrium, resulting in sequential single
electron tunneling and masing. We develop a dynamic tuning protocol that allows
us to controllably increase the time-averaged repumping rate of the DQD at a
fixed level detuning, and quantitatively study the transition through the
masing threshold. We further examine the crossover from incoherent to coherent
emission by measuring the photon statistics across the masing transition. The
observed threshold behavior is in agreement with an existing single atom maser
theory when small corrections from lead emission are taken into account
Investigation of Mobility Limiting Mechanisms in Undoped Si/SiGe Heterostructures
We perform detailed magnetotransport studies on two-dimensional electron
gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify
the electron mobility limiting mechanisms in this increasingly important
materials system. By analyzing data from 26 wafers with different
heterostructure growth profiles we observe a strong correlation between the
background oxygen concentration in the Si quantum well and the maximum
mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000
cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator
transition at a critical density 0.46 x 10^11/cm^2. We extract a valley
splitting of approximately 150 microeV at a magnetic field of 1.8 T. These
results provide evidence that undoped Si/SiGe heterostructures are suitable for
the fabrication of few-electron quantum dots.Comment: Related papers at http://pettagroup.princeton.ed
Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells.
DNA-dependent protein kinase (DNA-PK) has an important role in the repair of DNA damage and regulates the radiation sensitivity of glioblastoma cells. The VCP (valosine-containing protein), a chaperone protein that regulates ubiquitin-dependent protein degradation, is phosphorylated by DNA-PK and recruited to DNA double-strand break sites to regulate DNA damage repair. However, it is not clear whether VCP is involved in DNA-PKcs (DNA-PK catalytic subunit) degradation or whether it regulates the radiosensitivity of glioblastoma. Our data demonstrated that DNA-PKcs was ubiquitinated and bound to VCP. VCP knockdown resulted in the accumulation of the DNA-PKcs protein in glioblastoma cells, and the proteasome inhibitor MG132 synergised this increase. As expected, this increase promoted the efficiency of DNA repair in several glioblastoma cell lines; in turn, this enhanced activity decreased the radiation sensitivity and prolonged the survival fraction of glioblastoma cells in vitro. Moreover, the VCP knockdown in glioblastoma cells reduced the survival time of the xenografted mice with radiation treatment relative to the control xenografted glioblastoma mice. In addition, the VCP protein was also downregulated in ~25% of GBM tissues from patients (WHO, grade IV astrocytoma), and the VCP protein level was correlated with patient survival (R(2)=0.5222, P<0.05). These findings demonstrated that VCP regulates DNA-PKcs degradation and increases the sensitivity of GBM cells to radiation
- …
