5,286 research outputs found
An Economic Model of Fair Use
The doctrine of fair use allows limited copying of creative works based on the rationale that copyright holders would consent to such uses if bargaining were possible. This paper develops a formal model of fair use in an effort to derive the efficient legal standard for applying the doctrine. The model interprets copies and originals as differentiated products and defines fair use as a threshold separating permissible copying from infringement. The analysis highlights the role of technology in shaping the efficient standard. Discussion of several key cases illustrates the applicability of the model.Fair use, Copyright law, Technological improvement
Recommended from our members
Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.
Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems
Detailed study of SNR G306.3-0.9 using XMM-Newton and Chandra observations
We used combined data from XMM-Newton and Chandra observatories to study the
X-ray morphology of SNR G306.3-0.9. A spatially-resolved spectral analysis was
used to obtain physical and geometrical parameters of different regions of the
remnant. Spitzer infrared observations were also used to constrain the
progenitor supernova and study the environment in which the SNR evolved. The
X-ray morphology of the remnant displays a non-uniform structure of
semi-circular appearance, with a bright southwest region and very weak or
almost negligible X-ray emission in its northern part. These results indicate
that the remnant is propagating in a non-uniform environment as the shock
fronts are encountering a high-density medium, where enhanced infrared emission
is detected. The X-ray spectral analysis of the selected regions shows distinct
emission-line features of several metal elements, confirming the thermal origin
of the emission. The X-ray spectra are well represented by a combination of two
absorbed thermal plasma models: one in equilibrium ionization with a mean
temperature of ~0.19 keV, and another out of equilibrium ionization at a higher
temperature of ~1.1 or 1.6-1.9 keV. For regions located in the northeast,
central, and southwest part of the SNR, we found elevated abundances of Si, S,
Ar, Ca, and Fe, typical of ejecta material. The outer regions located northwest
and south show values of the abundances above solar but lower than to those
found in the central regions. This suggests that the composition of the
emitting outer parts of the SNR is a combination of ejecta and shocked material
of the interstellar medium. The comparison between the S/Si, Ar/Si, and Ca/Si
abundances ratios (1.75, 1.27, and 2.72 in the central region, respectively),
favor a Type Ia progenitor for this SNR, a result that is also supported by an
independent morphological analysis using X-ray and IR data.Comment: 8 pages, 7 figures. Accepted by Astronomy and Astrophysic
The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs
Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information
Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint
The ARF tumor suppressor is a potent sensor of hyperproliferative cues emanating from oncogenic signaling. ARF responds to these cues by eliciting a cell cycle arrest, effectively abating the tumorigenic potential of these stimuli. Prior reports have demonstrated that oncogenic Ras(V12) signaling induces ARF through a mechanism mediated by the Dmp1 transcription factor. However, we now show that ARF protein is still induced in response to Ras(V12) in the absence of Dmp1 through the enhanced translation of existing Arf mRNAs. Here, we report that the progrowth Ras/tuberous sclerosis complex (TSC)/mTORC1 signaling pathway regulates ARF protein expression and triggers ARF-mediated tumor suppression through a novel translational mechanism. Hyperactivation of mTORC1 through Tsc1 loss resulted in a significant increase in ARF expression, activation of the p53 pathway, and a dramatic cell cycle arrest, which were completely reversed upon Arf deletion. ARF protein induced from Ras(V12) in the absence of Dmp1 repressed anchorage-independent colony formation in soft agar and tumor burden in an allograft model. Taken together, our data demonstrate the ability of the ARF tumor suppressor to respond to hypergrowth stimuli to prevent unwarranted tumor formation
Distribution of parallel vortices studied by spin-polarized neutron reflectivity and magnetization
We present the studies of non-uniformly distributed vortices in Nb/Al
multilayers at applied field near parallel to film surface by using
spin-polarized neutron reflectivity (SPNR) and DC magnetization measurements.
We have observed peaks above the lower critical field, Hc1, in the M-H curves
from the multilayers.
Previous works with a model calculation of minimizing Gibbs free energy have
suggested that the peaks could be ascribed to vortex line transitions for
spatial commensuration in a thin film superconductor. In order to directly
determine the distribution of vortices, we performed SPNR measurements on the
multilayer and found that the distribution and density of vortices are
different at ascending and descending fields. At ascending 2000 Oe which is
just below the first peak in the M-H curve, SPNR shows that vortices are mostly
localized near a middle line of the film meanwhile the vortices are distributed
in broader region at the descending 2000 Oe. That is related to the observation
of more vortices trapped at the descending field. As the applied field is
sightly tilted (< 3.5degree), we observe another peak at a smaller field. The
peak position is consistent with the parallel lower critical field (Hc1||). We
discuss that the vortices run along the applied field below Hc1|| and rotate
parallel to the surface at Hc1||.Comment: 17 pages, 9 figure
Temperature and orientation dependence of kinetic roughening during homoepitaxy: A quantitative x-ray-scattering study of Ag
URL:http://link.aps.org/doi/10.1103/PhysRevB.54.17938
DOI:10.1103/PhysRevB.54.17938Kinetic roughening during homoepitaxial growth was studied for Ag(111) and Ag(001). For Ag(111), from 150 to 500 K, the rms roughness exhibits a power law, σ∝tβ over nearly three decades in thickness. β≈1/2 at low temperatures, and there is an abrupt transition to smaller values above 300 K. In contrast, Ag(001) exhibits layer-by-layer growth with a significantly smaller β. These results are the first to establish the evolution of surface roughness quantitatively for a broad thickness and temperature range, as well as for the case where growth kinetics are dominated by a step-ledge diffusion barrier.Support is acknowledged from the University of Missouri Research Board, the NSF under Contract Nos. DMR-9202528 and DMR-9623827, and the Midwest Superconductivity Consortium ~MISCON! under DOE Grant No. DE-FG02-90ER45427. The SUNY X3 beamline is supported by the DOE under Contract No. DE-FG02-86ER45231, and the NSLS is supported by the DOE, Div. of Materials Sciences and Div. of Chemical Sciences. One of us
~W.C.E.! acknowledges support from the GAANN program of the U.S. Department of Education. We thank Ian Robinson for the Ag~111! crystal
Temperature dependence of surface roughening during homoepitaxial growth on Cu(001)
URL:http://link.aps.org/doi/10.1103/PhysRevB.64.125427
DOI:10.1103/PhysRevB.64.125427X-ray scattering has been used to study the roughening of the Cu(001) surface during homoepitaxial growth, as a function of temperature. Between 370 and 160 K, the mean-square roughness σ2, obtained from specular reflectivity data, was found to increase as a power law σ2=Θ2β for coverages Θ, ranging from 3 to 96 ML. The roughening exponent β was observed to depend on the temperature of the substrate: it monotonically increases with decreasing temperature from β≈1/3 at T=370K to β≈1/2, at T=200K. At 110 K a smoother growth re-enters in the presence of a large vacancy concentration in the deposited film.Support is acknowledged from the National Science Foundation under contracts ~P.W.S.! DMR-9202528 and~P.F.M. and C.E.B.! DMR-9623827 and the Midwest Superconductivity
Consortium ~MISCON! under DOE Grant No.
DH-FG02-90ER45427. The SUNY X3 beamline was supported by the DOE, under Contract No. DE-FG02-86ER45231, and the NSLS was supported by the DOE, Division of Material Sciences, and Division of Chemical
Sciences. We thank Ian Robinson for the Cu crystal and for valuable discussions
- …
