49 research outputs found

    Tiotropium Respimat® in asthma: a double-blind, randomised, dose-ranging study in adult patients with moderate asthma

    Get PDF
    BACKGROUND: Tiotropium, a once-daily long-acting anticholinergic bronchodilator, when administered via Respimat® SoftMist™ inhaler (tiotropium Respimat®) significantly reduces the risk of severe exacerbations and improves lung function in patients with severe persistent asthma that is not fully controlled despite using inhaled corticosteroids (ICS) and long-acting β(2)-agonists. To further explore the dose–response curve in asthma, we investigated the efficacy and safety of three different doses of tiotropium Respimat® as add-on to ICS in symptomatic patients with moderate persistent asthma. METHODS: In this randomised, double-blind, placebo-controlled, four-way crossover study, patients were randomised to tiotropium Respimat® 5 μg, 2.5 μg or 1.25 μg or placebo Respimat®, once daily in the evening. Each treatment was administered for 4 weeks, without washout between treatment periods. Eligibility criteria included ≥60% and ≤90% of predicted normal forced expiratory volume in 1 second (FEV(1)) and seven-question Asthma Control Questionnaire mean score of ≥1.5. Patients were required to continue maintenance treatment with stable medium-dose ICS for at least 4 weeks prior to and during the treatment period. Long-acting β(2)-agonists were not permitted during the treatment phase. The primary efficacy end point was peak FEV(1) measured within 3 hours after dosing (peak FEV(1(0-3h))) at the end of each 4-week period, analysed as a response (change from study baseline). RESULTS: In total, 149 patients were randomised and 141 completed the study. Statistically significant improvements in peak FEV(1(0-3h)) response were observed with each tiotropium Respimat® dose versus placebo (all P < 0.0001). The largest difference from placebo was with tiotropium Respimat® 5 μg (188 mL). Trough FEV(1) and FEV(1) area under the curve (AUC)((0-3h)) responses were greater with each tiotropium Respimat® dose than with placebo (all P < 0.0001), and both were greatest with 5 μg. Peak forced vital capacity (FVC)((0-3h)), trough FVC and FVC AUC((0-3h)) responses, versus placebo, were greatest with tiotropium Respimat® 5 μg (P < 0.0001, P = 0.0012 and P < 0.0001, respectively). Incidence of adverse events was comparable between placebo and all tiotropium Respimat® groups. CONCLUSIONS: Once-daily tiotropium Respimat® add-on to medium-dose ICS improves lung function in symptomatic patients with moderate asthma. Overall, improvements were largest with tiotropium Respimat® 5 μg. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01233284

    Interdisciplinary Approaches to Deal with Alzheimer’s Disease : From Bench to Bedside: What Feasible Options Do Already Exist Today?

    Get PDF
    Alzheimer’s disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer’s disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer’s disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer’s disease, raising the question of whether dental intervention in Alzheimer’s patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer’s disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer’s disease

    Gene Editing–Mediated Disruption of Epidermolytic Ichthyosis–Associated KRT10 Alleles Restores Filament Stability in Keratinocytes

    Get PDF
    Epidermolytic ichthyosis is a skin fragility disorder caused by dominant-negative mutations in KRT1 or KRT10. No definitive restorative therapies exist that target these genetic faults. Gene editing can be used to efficiently introduce frameshift mutations to inactivate mutant genes. This can be applied to counter the effect of dominantly inherited diseases such as epidermolytic ichthyosis. In this study, we used transcription activator-like effector nuclease technology, to disrupt disease-causing mutant KRT10 alleles in an ex vivo cellular approach, with the intent of developing a therapy for patients with epidermolytic ichthyosis. A transcription activator-like effector nuclease was designed to specifically target a region of KRT10, upstream of a premature termination codon known to induce a genetic knockout. This proved highly efficient at gene disruption in a patient-derived keratinocyte cell line. In addition, analysis for off-target effects indicated no promiscuous gene editing–mediated disruption. Reversion of the keratin intermediate filament fragility phenotype associated with epidermolytic ichthyosis was observed by the immunofluorescence analysis of correctly gene-edited single-cell clones. This was in concurrence with immunofluorescence and ultrastructure analysis of murine xenograft models. The efficiency of this approach was subsequently confirmed in primary patient keratinocytes. Our data demonstrate the feasibility of an ex vivo gene-editing therapy for more than 95.6% of dominant KRT10 mutations.</p

    A cancer stem cell-like phenotype is associated with miR-10b expression in aggressive squamous cell carcinomas

    Get PDF
    Background Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. Methods MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. Results Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. Conclusion The discovery that miR-10b mediates an aspect of cancer stemness – that of enhanced tumor cell adhesion, known to facilitate metastatic colonization – provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA

    Transcriptome-Guided Drug Repurposing for Aggressive SCCs

    No full text
    Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs.</jats:p

    287 Development of a non-invasive, non-viral RNA therapy approach for dystrophic epidermolysis bullosa

    No full text
    In this study we aim to correct mutations within COL7A1 that cause malfunction, reduction or complete absence of type VII collagen in the skin’s basement membrane zone (BMZ), leading to dystrophic epidermolysis bullosa (DEB), a severe and rare skin blistering disease associated with a high risk of skin cancer as well as increased mortality. Therefore, we use a 3’-RTMS6m repair molecule to develop a safe, non-viral, non-invasive and efficient in vivo RNA therapy for DEB. This RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable to correct all mutations occurring between exon 65 and exon 108 of COL7A1 via a trans-splicing reaction between the repair molecule and the mutated mRNA. We tested the efficiency and specificity of the RTM in vitro in DEB keratinocytes and fibroblasts and confirmed correct trans-splicing on mRNA level via qPCR analysis, NGS as well as type VII collagen expression via immunofluorescence (IF) staining of transfected cells. Additionally we used a complex of 3’-RTMS6m with liposomes to deliver the RTMS6m onto DEB skin equivalents and were able to show a partial restoration of the type VII collagen expression at the BMZ, confirmed via IF staining of cryosections. Based on the conclusion that we can efficiently correct DEB keratinocytes and fibroblasts in an in vitro setting, we are aiming to analyze the functionality of the 3’-RTMS6m repair molecule in a DEB xenograft mouse model in vivo

    Transcriptome-Guided Drug Repurposing for Aggressive SCCs

    No full text
    Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs

    Basal pharmacokinetic parameters of topically applied diacerein in pediatric patients with generalized severe epidermolysis bullosa simplex

    No full text
    Abstract Generalized severe epidermolysis bullosa simplex (EBS-gen sev) is caused by mutations within either the KRT5 or KRT14 gene, phenotypically resulting in blistering and wounding of the skin and mucous membranes after minor mechanical friction. In a clinical phase 2/3 trial, diacerein has recently been shown to significantly reduce blister numbers upon topical application. In this study we addressed basic pharmacokinetic parameters of locally applied diacerein in vitro and in vivo. Ex vivo experiments using a Franz diffusion cell confirmed the uptake and bio-transformation of diacerein to rhein in a porcine skin model. Rhein, the active metabolite of diacerein, was also detected in both urine and serum samples of two EBS-gen sev patients who topically applied a 1% diacerein ointment over a period of 4 weeks. The accumulated systemic levels of rhein in EBS-gen sev patients were lower than reported levels after oral application. These preliminary findings point towards the uptake and prolonged persistance of diacerein / rhein within the intended target organ - the skin. Further, they imply an acceptable safety profile at the systemic level. Trial registration DRKS. DRKS00005412. Registered 6 November 2013
    corecore